Regions of Interaction between Nicotinic Acetylcholine Receptor and α-Neurotoxins and Development of a Synthetic Vaccine Against Toxin Poisoning

  • M. Zouhair Atassi
  • Behzod Z. Dolimbek


The nicotinic acetylcholine receptor, (AChR) is a membrane protein on the postsynaptic neuromuscular junction. It has a principal role in postsynaptic neuromuscular transmission because it mediates ion flux across the membrane (1–2). The receptor is a pentamer composed of four subunits α2βγδ. Functional studies have focused mostly on the α-subunit because it is responsible for binding acetycholine (3–5) and α-neurotoxins (6). Snake venom postsynaptic neurotoxins form a large family of related proteins of which two subgroups, the long and short neurotoxins, are major constituents. Both long and short neurotoxins are known to bind specifically to the α-chain of AChR in a competitive manner with cholinergic ligands (7–8), but display differences in their association and dissociation kinetics.


Acetylcholine Receptor Synthetic Peptide Nicotinic Acetylcholine Receptor Extracellular Part Snake Venom Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Karlin, A. (1980) Molecular properties of nicotinic acetylcholine receptors. In Cell Surface and Neuronal Function (Edited by Colman, C.W., Poste, G. and Nicolson, G.L. ), pp. 191–260. Elsevier/North-Holland Biomedical Press, New York.Google Scholar
  2. 2.
    Changeux, J.P., Devillers-Thiery A. and Chemouilli, P. (1984) Acetylcholine receptor: an allosteric protein. Science 225, 1335–1345.PubMedCrossRefGoogle Scholar
  3. 3.
    Sobel, A., Weber, M. and Changeux, J.P. (1977) Large-scale purification of the acetylcholine-receptor protein in its membrane-bound and detergent-extracted forms from Torpedo marmorata electric organ. Eur. J. Biochem. 80, 215–224.PubMedCrossRefGoogle Scholar
  4. 4.
    Tzartos, S.J. and Changeux, J.P. (1983) High affinity binding of a-bungarotoxin to the purified a-subunit and its 27,00-dalton proteolytic peptide from Torpedo marmorata acetylcholine receptor. Requirements for sodium dodecil sulfate. EMBO J. 2, 381–387.PubMedGoogle Scholar
  5. 5.
    McCormick, D.J. and Atassi, M.Z. (1984) Localization and synthesis of the acetylcholine-binding site in the a-chain of the Torpedo californica acetylcholine receptor. Biochem. J. 224, 995–1000.PubMedGoogle Scholar
  6. 6.
    Lee, C.Y. (1979) Recent advances and pharmacology of snake toxins. Adv. Cytopharmacol. 3, 1–16.PubMedGoogle Scholar
  7. 7.
    Maelicke, A., Fulpius, B.W., Klett, R.P. and Reich, E. (1977) Acetylcholine receptor. Responses to drug binding. J. Biol. Chem. 252, 4811–4830.PubMedGoogle Scholar
  8. 8.
    Haggerty, J.G. and Froehner, S.C. (1981) Restoration of 125I-a-bungarotoxin binding activity to the a-subunit of Torpedo acetylcholine receptor isolated by gel electrophoresis in sodium dodecyl sulfate. J. Bio Chem. 256, 8294–8297.Google Scholar
  9. 9.
    Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T. and Numa, S. (1982) Primary structure of a-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature (London) 299, 793–797.CrossRefGoogle Scholar
  10. 10.
    Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Tanabe, T., Shimizu, S., Kikyotani, S., Kayano, T., Hirose, T., Inoyama, S. and Numa, S. (1983) Cloning and sequence analysis of calf cDNA and human genomic DNA encoding alpha-subunit precursor of muscle acetylcholine receptor. Nature 305, 818–823.PubMedCrossRefGoogle Scholar
  11. 11.
    Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, Miyata, T. and Numa, S. (1983) Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 302, 528–532.Google Scholar
  12. 12.
    Claudio, T., Ballivet, M., Patrick, J. and Heinemann S. (1983) Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor subunit. Proc. Nat. Acad. Sci. USA 80, 1111–1115.PubMedCrossRefGoogle Scholar
  13. 13.
    Isenberg, K.E., Mudd, J., Shah, V. and Merlie, J.P. (1986) Nucleotide sequence of the mouse muscle nicotinic acetylcholine receptor alpha subunit. Nucleic Acids Res. 14, 5111–5111PubMedCrossRefGoogle Scholar
  14. Boulter, J., Evans, K, Goldman, D., Martin, G., Treco, D., Heinemann, D. and Patrick J. (1986) Isolation of a eDNA clone coding for a possible neural nicotinic acetylcholine receptor a-subunit. Nature (London) 319, 368–374.CrossRefGoogle Scholar
  15. 14.
    Buonanno, A., Mudd, J., Shah, V. and Merlie, J.P. (1986) A universal oligonucleotide probe for acetylcholine receptor genes: Selection and sequencing of eDNA clones of the mouse muscle beta subunit. J. Biol. Chem. 261, 16451–16458.PubMedGoogle Scholar
  16. 15.
    Yu., L, LaPolla, J. and Davidson, N. (1986) Mouse nicotinic acetylcholine receptor gamma subunit: eDNA sequence and gene expression. Nucleic Acids Res. 14, 3539–3555.CrossRefGoogle Scholar
  17. 16.
    LaPolla, R.J., Mayne, K.M. and Davidson, N. (1984) Isolation and characterization of a cDNA clone for the complete protein coding region of the delta subunit of the mouse acetylcholine receptor. Proc. Natl. Acad. Sci. USA 81, 7970–7974.PubMedCrossRefGoogle Scholar
  18. 17.
    Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Hirose, T., Asai, M., Takashima, H., Inayama, S., Miyata, T., Numa, S. (1983) Primary structures of 13- and 5-subunit precursors of Torpedo californica acetylcholine receptor deduced from eDNA sequences. Nature (London) 301, 251–255.CrossRefGoogle Scholar
  19. 18.
    Guy, H.R. (1983) A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations. Biophys. J. 45, 249–261.CrossRefGoogle Scholar
  20. 19.
    Finer-Moore, J. and Stroud, R.M. (1984) Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor. Proc Natl. Acad. Sci. 81, 155–159.PubMedCrossRefGoogle Scholar
  21. 20.
    Atassi, M.Z., Manshouri, T. and Yokoi, T. (1988) Recognition of inter-transmembrane regions of acetylcholine receptor a subunit by antibodies, T cells and neurotoxins. Implications for membrane subunit organization. FEBS Lett. 228, 295–300.PubMedCrossRefGoogle Scholar
  22. 21.
    Kazim, A.L. and Atassi M.Z. (1980) A novel and comprehensive synthetic approach for the elucidation of protein antigenic structures. Determination of the full antigenic profile of the a-chain of human haemoglobin. Biochem. J. 191, 261–264.PubMedGoogle Scholar
  23. 22.
    Kazim, A.L. and Atassi, M.Z. (1982). Structurally inherent antigenic sites. Localization of the antigenic sites. Localization of the antigenic sites of the a-chain of human haemoglobin in three host species by a comprehensive synthetic approach. Biochem. J. 203: 201–208.PubMedGoogle Scholar
  24. 23.
    Atassi, M.Z. and Mulac-Jericevic, B. (1994). Mapping of the extracellular topography of the a-chain in free and in membrane-bound acetylcholine receptor by antibodies against overlapping peptides spanning the entire extracellular parts of the chain. J. Prot. Chem. 13, 37–47.CrossRefGoogle Scholar
  25. 24.
    Jinnai, K., Ashizawa, T. and Atassi, M.Z. (1994) Analysis of exposed regions on the main extracellular domain of mouse acetylcholine a-subunit in live muscle cells by binding profiles of anti peptide antibodies: J. Prot. Chem. 13, 715–722CrossRefGoogle Scholar
  26. 25.
    Mulac-Jericevic, B. and Atassi, M.Z. (1986) Segment a 182–198 of Torpedo californica acetylcholine receptor contains a second toxin-binding region and binds anti-receptor antibodies. FEBS Lett. 199, 68–74.PubMedCrossRefGoogle Scholar
  27. 26.
    Mulac-Jericevic, B. and Atassi, M.Z. (1987) a-neurotoxin binding to acetylcholine receptor: localization of the full profile of the cobratoxin-binding regions in the a-chain of Torpedo californica acetylcholine receptor by a comprehensive synthetic strategy. J. Prot. Chem. 6, 365–373.Google Scholar
  28. 27.
    Mulac-Jericevic, B. and Atassi, M.Z. (1987) Profile of the a-bungarotoxin binding regions on the extracellular part of the a-chain of Torpedo californica acetylcholine receptor. Biochem. J. 248, 847–852.PubMedGoogle Scholar
  29. 28.
    Mulac-Jericevic, B., Manshouri, T., Yokoi, T. and Atassi, M.Z. (1988) The regions of a-neurotoxin binding on the extracellular part of the a-subunit of human acetylcholine receptor. J. Prot. Chem. 7, 173–177.CrossRefGoogle Scholar
  30. 29.
    Ruan, K.-H., Stiles, B.G. and Atassi, M.Z. (1991) The short-neurotoxin binding regions on the a-chain of human and Torpedo californica acetylcholine receptors. Biochem. J. 274, 849–854.PubMedGoogle Scholar
  31. 30.
    McDaniel, C.S., Manshouri, T. and Atassi, M.Z. (1987) A novel peptide mimicking the interaction of a-neurotoxins with acetylcholine receptor. J. Prot. Chem. 6, 455–461.CrossRefGoogle Scholar
  32. 31.
    Atassi, M.Z., McDaniel, C.S. and Manshouri, T. (1988) Mapping by synthetic peptides of the binding sites for acetylcholine receptor on a-bungarotoxin. J. Prot. Chem. 7, 655–666.CrossRefGoogle Scholar
  33. 32.
    Devillers-Thiery, J.A., Giraudat, J., Bentaboulet, M. and Changeux, J.P. (1983). Complete mRNA coding sequence of the acetylcholine binding a-subunit of Torpedo marmorata acetylcholine receptor: A model for the transmembrane organization of the polypeptide chain. Proc. Natl. Acad. Sci. USA, 80: 2067–2071.PubMedCrossRefGoogle Scholar
  34. 33.
    Lennon, V.A., McCormick, D.J., Lambert, E.H., Griesmann, G.E. and Atassi, M.Z. (1985) Region of peptide 125–147 of acetylcholine receptor a-subunit is exposed at neuromuscular junction and induces experimental autoimmune myasthenia gravis, T-cell immunity and modulating autoantibodies. Proc. Natl. Acad. Sci. USA, 82, 8805–8809.PubMedCrossRefGoogle Scholar
  35. 34.
    Atassi, M.Z., Ruan, K.H., Jinnai, K., Oshima, M. and Ashizawa, T. (1992) Epitope-specific suppression of antibody response in experimental autoimmune myasthenia gravis by an mPEG conjugate of a myasthenogenic synthetic peptide. Proc. Natl. Sci. USA, 89, 5852–5856.CrossRefGoogle Scholar
  36. 35.
    Ruan, K.-H., Spurlino, J., Quiocho, F.A. and Atassi, M.Z. (1990) Acetylcholine receptor a-bungarotoxin interactions: determination of the region-to-region contacts by peptide-peptide interactions and molecular modeling of the receptor cavity. Proc. Natl. Acad. Sci. USA, 87, 6156–6160.PubMedCrossRefGoogle Scholar
  37. 36.
    Endo, T. and Tamiya, N. (1987). Current view on the structure function relationship of post-synaptic neurotoxins from snake venom. Pharmacol. Ther. 34, 403–451.PubMedCrossRefGoogle Scholar
  38. 37.
    Atassi, M.Z. (1991). Postsynaptic-neurotoxin-acetylcholine receptor interactions and the binding sites on the two molecules. In: Handbook of Natural Toxins, ed. A. Tu, pp. 53–83, Marcel Dekker, New York.Google Scholar
  39. 38.
    Love, R.A. and Stroud, R.M. (1986) The crystal structure of a-bungartoxin 2.5. A resolution related to solution structures and binding to acetylcholine receptor. Protein Eng. 1 37–46.PubMedCrossRefGoogle Scholar
  40. 39.
    Atassi, M.Z., Dolimbek, B.Z. and Manshouri, T. (1995) Antibody and T-cell recongition of a-bungarotoxin and its synthetic loop peptides. Mol. Immunol.,in pressGoogle Scholar
  41. 40.
    Dolimbek, B.Z. and Atassi, M.Z. (1994) a-Bugarotoxin peptides afford a synthetic vaccine against toxin poisoning. J. Prot. Chem. 13, 490–493.Google Scholar
  42. 41.
    Bixler, G.S. and Atassi, M.Z. (1983) Molecular localization of the full profile of the continuous regions recognized by myoglobin-primed T-cells using synthetic overlapping peptides encompassing the entire molecule. Immunol. Commun. 12, 593–603.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • M. Zouhair Atassi
    • 1
  • Behzod Z. Dolimbek
    • 1
  1. 1.Department of BiochemistryBaylor College of MedicineHoustonUSA

Personalised recommendations