Investigation of Protein-Protein Interactions in Mitochondrial Steroid Hydroxylase Systems Using Site-Directed Mutagenesis

  • Rita Bernhardt
  • Regine Kraft
  • Heike Uhlmann
  • Vita Beckert


Adrenodoxin belongs to the family of /2Fe-2S/ type ferredoxins being widely distributed in bacteria, plants and animals. Although adrenodoxin is a small (~14 kDa) and soluble protein, its three-dimensional structure has not been elucidated as yet. It functions as an electron carrier from the FAD-containing NADPH-dependent ferredoxin reductase to the cytochromes P450scc (CYP11A1), which catalyzes the side-chain cleavage of cholesterol, the initial step in adrenal steroidogenesis, and P45011β (CYP11B1), being involved in the formation of cortisol and aldosterone (Fig. 1).


Redox Partner Ferredoxin Reductase Cholesterol Side Chain Cleavage Redox Potential Measurement Adrenodoxin Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akhrem, A. A., Lapko, V.N., Lapko, A.G., Shkumatov, V.M., and Chashchin, V.L. (1979) Isolation, structural organization and mechanism of action of mitochondria) steroid hydroxylating systems. Acta biol. med. ger. 38, 257–273PubMedGoogle Scholar
  2. Beckert, V., Dettmer, R., and Bernhardt, R. (1994) Mutations of Tyrosine 82 in Bovine Adrenodoxin That Affect Binding to Cytochromes P45011A1 and P45011B 1 but Not Electron Transfer. J. Biol. Chem. 269, 2568–2573PubMedGoogle Scholar
  3. Bhasker, C.R., Okamura, T., Simpson, E.R., and Waterman, M.R. (1987) Mature bovine adrenodoxin contains a 14-amino-acid COOH-terminal extension originally detected by cDNA sequencing. Eur. J. Biochem. 164, 21–25PubMedCrossRefGoogle Scholar
  4. Coghlan, V.M., Cupp, J. R., and Vickery, L.E. (1988) Purification and Characterization of Human Placental Ferredoxin. Arch. Biochem. Biophys. 264, 376–382PubMedCrossRefGoogle Scholar
  5. Coghlan, V.M., and Vickery, L.E. (1991) Site-specific Mutations in Human Ferredoxin That Affect Binding to Ferredoxin Reductase and Cytochrome P450scc. J. Biol. Chem. 266, 18606–18612PubMedGoogle Scholar
  6. Cupp, J.R., and Vickery, L.E. (1989) Adrenodoxin with a COOH-terminal Deletion (des 116–128) Exhibits Enhanced Activity. J. Biol. Chem. 264, 1602–1607PubMedGoogle Scholar
  7. Driscoll, W.J., and Omdahl, J.L. (1986) Kidney and Adrenal Mitochondria Contain two Forms ofNADPH-adrenodoxin Reductase-dependent Iron-Sulfur Proteins. J. Biol. Chem. 261, 4122–4125PubMedGoogle Scholar
  8. Geren, L.M., O’Brien, P., Stonehuemer, J., and Millett, F. (1984) Identification of specific Carboxylate Groups on Adrenodoxin That Are Involved in the Interaction with Adrenodoxin Reductase. J. Biol. Chem. 259, 2155–2160PubMedGoogle Scholar
  9. Hanukoglu, I., and Jefcoate, C. R. (1980) Mitochondrial Cytochrome P-450scc. Mechanism of electron transport by adrenodoxin. J. Biol. Chem. 255, 3057–3061PubMedGoogle Scholar
  10. Hara, T., and Takeshima, M. (1994) Conclusive evidence of a quaternary cluster model for cholesterol side chain cleavage reaction catalyzed by cytochrome P-450scc. In: Lechner, M.C. (ed) Cytochrome P450. 8th International Conference. John Libbey Eurotext, Paris. pp. 417–420Google Scholar
  11. Hiwatashi, A., Sakihama, N., Shin, M., and Ichikawa, Y. (1986) Heterogeneity of adrenocortical ferredoxin. FEBS Lett. 209, 311–315PubMedCrossRefGoogle Scholar
  12. Kido, T., and Kimura, T. (1979) The Formation of Binary and Tertiary Complexes of Cytochrome P-450scc with Adrenodoxin and Adrenodoxin ReductaseAdrenodoxin Complex. J. Biol. Chem. 254, 11806–11815PubMedGoogle Scholar
  13. Kominami, S., Ochi, H., and Takemori, S. (1979) Electron paramagnetic resonance studies of the purified cytochrome P-450scc and P-45011 p from bovine adrenocortical mitochondria. Biochim. Biophys. Acta 577, 170–176PubMedCrossRefGoogle Scholar
  14. Lambeth, J.D., and Kamin, H. (1979) Adrenodoxin ReductaseAdrenodoxin Complex. Flavin to iron-sulfur electron transfer as the rate-limiting step in the NADPH-cytochrome c reductase reaction. J. Biol. Chem. 254, 2766–2774PubMedGoogle Scholar
  15. Matocha, M.F., and Waterman, M. (1984) Discriminatory Processing of the Precursor Forms of Cytochrome P-450scc and Adrenodoxin by Adrenocortical and Heart Mitochondria. J. Biol. Chem. 259, 8672–8678PubMedGoogle Scholar
  16. Matocha, M.F., and Waterman, M.R. (1985) Synthesis and Processing of Mitochondrial Steroid Hydroxylases. J. Biol. Chem. 260, 12259–12265PubMedGoogle Scholar
  17. Mittal, S., Zhu, Y-Z., and Vickery, L.E. (1988) Molecular Cloning and Sequence Analysis of Human Placental Ferredoxin. Arch. Biochem. Biophys. 264, 383–391PubMedCrossRefGoogle Scholar
  18. Miura, S., and Ichikawa, Y. (1991) Conformational Change of Adrenodoxin Induced by Reduction of Iron-Sulfur Cluster. J. Biol. Chem. 266, 6252–6258PubMedGoogle Scholar
  19. Nabi, N., Ishikawa, T., Ohashi, M., and Omura, T. (1983) Contributions of Cytoplasmatic Free and Membrane-Bound Ribosomes to the Synthesis of NADPH-Adrenodoxin-Reductase and Adrenodoxin of Bovine Adrenal Cortex Mitochondria. J. Biochem. 94, 1505–1515PubMedGoogle Scholar
  20. Okamura, T., John, M.E., Zuber, M.X., Simpson, E.R., and Waterman, M.R. (1985) Molecular cloning and amino acid sequence of the precursor form of bovine adrenodoxin: Evidence for a previously unidentified COOH-terminal peptide.Proc. Natl. Acad. Sci. U.S.A. 82, 5705–5709CrossRefGoogle Scholar
  21. Sagara, Y., Ito, A., and Omura, T. (1984) Partial Purification of a Metalloprotease Catalyzing the Processing of Adrenodoxin Precursor in Bovine Adrenal Cortex Mitochondria. J.Biochem. 96, 1743–1752PubMedGoogle Scholar
  22. Sakihama, N., Hiwatashi, A., Miyatake, A., Shin, M., and Ichikawa, Y. (1988) Isolation and Purification of Mature Bovine Adrenocortical Ferredoxin with an Elongated Carboxyl End. Arch. Biochem. Biophys. 264, 23–29PubMedCrossRefGoogle Scholar
  23. Sligar, S.G., Cinti, D.L., Gibson, G.G., and Schenkman, J.B. (1979) Spin State Control of the Hepatic Cytochrome P450 Redox Potential. Biochem. Biophys. Res. Commun. 90, 925–932PubMedCrossRefGoogle Scholar
  24. Sugano,S., Morishima, N., Ikeda, H., and Horie, S. (1989) Sensitive Assay of Cytochrome P450scc Activity by High-Performance Liquid Chromatography. Anal. Biochem. 182, 327–333CrossRefGoogle Scholar
  25. Takemori, S., Sato, H., Gomi, T., Suhara, K., and Katagiri, M. (1975) Purification and properties of cytochrome P-45011 from adrenocortical mitochondria. Biochem. Biophys. Res. Comm. 67, 1151–1157PubMedCrossRefGoogle Scholar
  26. Tanaka, M., Haniu, M., Yasunobu, K.T., and Kimura, T. (1973) The Amino Acid Sequence of Bovine Adrenodoxin. J. Biol. Chem. 248, 1141–1157PubMedGoogle Scholar
  27. Taniguchi, T., and Kimura, T. (1975) Studies on NO2-Tyr82 and NI12-Tyr82 Derivatives of Adrenodoxin. Effects Of Chemical Modification On Electron Transferring Activity. Biochemistry 14, 5573–5578PubMedCrossRefGoogle Scholar
  28. Taniguchi, T., and Kimura, T. (1976) Studies on Nitrotyrosine-82 and Aminotyrosine-82 Derivatives of Adrenodoxin. Effects of Chemical Modification on the Complex Formantion with Adrenodoxin Reductase. Biochemistry 15, 2849–2853PubMedCrossRefGoogle Scholar
  29. Uhlmann, H., Beckert, V., Schwarz, D., and Bernhardt, R. (1992) Expression of Bovine Adrenodoxin in E. coli and Site-Directed Mutagenesis of /2Fe-2S/ Cluster Ligands. Biochem. Biophys. Res. Commun. 188, 1131–1138CrossRefGoogle Scholar
  30. Uhlmann, H., Kraft, R., and Bernhardt, R. (1994) C-Terminal Region of Adrenodoxin Affects Its Structural Integrity and Determines Differences in Its Electron Transfer Function to Cytochrome P-450. J. Biol. Chem., 269, 22557–22564PubMedGoogle Scholar
  31. Usanov, S.A., Chashchin, V.L., and Akhrem, A.A. (1990) Cytochrome P-450 Dependent Pathways of the Biosynthesis of Steroid Hormones. In: Frontiers in Biotransformation (K. Ruckpaul and H. Rein, Eds.), vol. 3, pp. 1–57, Akademie-Verlag BerlinGoogle Scholar
  32. Wada, A., and Waterman, M.R. (1992) Identification by Site-directed Mutagenesis of Two Lysine Residues in Cholesterol Side Chain Cleavage Cytochrome P450 That Are Essential for Adrenodoxin Binding. J. Biol. Chem. 267, 22877–22882PubMedGoogle Scholar
  33. Watanuki, M., Tilley, B.E., and Hall, P.F. (1978) Cytochrome P-450 for 1113- and 18-Hydroxylase Activities of Bovine Adrenocortical Mitochondria: One Enzyme or Two? Biochemistry 17, 127–130PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Rita Bernhardt
    • 1
    • 2
  • Regine Kraft
    • 1
    • 3
  • Heike Uhlmann
    • 1
  • Vita Beckert
    • 1
  1. 1.Max-Delbrück-Centrum für Molekulare MedizinBerlinGermany
  2. 2.FB Chemie, Institut für BiochemieFreie Universität BerlinBerlinGermany
  3. 3.FB ChemieHumboldt-Universität BerlinBerlinGermany

Personalised recommendations