X-Ray Photoelectron Spectroscopy of Amino Acids, Polypeptides and Simple Carbohydrates

  • Kenneth E. Dombrowski
  • Stephen E. Wright
  • Jannine C. Birkbeck
  • William E. Moddeman

Abstract

X-ray photoelectron spectroscopy (XPS) is a surface sensitive analytical technique which measures the binding energy of electrons in atoms and molecules. The binding energy can be related to the molecular bonding or oxidation state of an element in the outermost layer of a material, that is 100 A. Thus, XPS is able to identify chemical species present on the surface of a molecule. In this paper XPS is briefly described. Spectra demonstrating its potential use for probing the surface properties of amino acids, polypeptides, proteins, carbohydrates and glycoproteins are discussed.

Keywords

Binding Energy Difference Oligosaccharide Side Chain Human Mucin Materiel Command Porcine Mucin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carlson, T. A., 1975 in Photoelectron and Auger Spectroscopy, Plenum Press, NY.CrossRefGoogle Scholar
  2. 2.
    Robinson, J. W., 1991 in Practical Handbook of Spectroscopy, CRC Press, Boca Raton, FL.Google Scholar
  3. 3.
    Worley, C. M., Vannet, M. D., Ball, G. L. and Moddeman, W. E., 1987 Surface chemistry of a microcoated energetic material, pentaerythritoltetranitrate ( PETN ). Surface and Interface Analysis, 10: 273.Google Scholar
  4. 4.
    Chiu, D., Tappel, A.L. and Millard, M.M., 1977 Improved procedure for x-ray photoelectron spectroscopy of selenium-glutathione peroxidase and application to the rat liver enzyme. Arch. Biochem. Biophys. 184: 209.CrossRefGoogle Scholar
  5. 5.
    Meisenheimer, R. G., Fisher, J. W. and Rehfeld, S. J., 1976 Thallium in human erythrocyte membranes: an x-ray photoelectron spectroscopy study. Biochem. Biophys. Res. Commun. 68, 994.Google Scholar
  6. 6.
    Pickart, L., Millard, M. M., Beiderman, B. and Thaler, M. M., 1978 Surface analysis and depth profiles of calcium in hepatoma cells during pyruvate-induced synthesis. Biochim. Biophys. Acta, 544: 138.Google Scholar
  7. 7.
    Millard, M. M., Scherrer, R. and Thomas, R. S. 1976 Surface analysis and depth profile composition of bacterial cells by x-ray photoelectron spectroscopy and oxygen plasma etching. Biochem. Biophys. Res. Commun. 72: 1209.Google Scholar
  8. 8.
    Peeling, J., Clark, D. T., Evans, M. and Boulter, D. 1976 Evaluation of the ESCA technique as a screening method for the estimation of protein content and quality in seed meals. J. Sci. Fd. Agric. 27: 331.Google Scholar
  9. 9.
    Siegbahn, K., Mordling, C., Fahlman, A, Mordbert, R., Hedman, J., Johnsson, G., Bergmark, T., Karlsson, S. E., Lindgren, I. and Linberg, B., 1967 ESCA-Atomic, Molecular, and Solid State Structure Studied by Means of Electron spectroscopy, Nova Acta Regiae Soc. Sci. Upsaliensis Ser. IV Vol. 20.Google Scholar
  10. 10.
    Bumben, K. D. and Dev, S. B. 1988 Investigation of poly(L-amino acids) by x-ray photoelectron spectroscopy. Anal. Chem. 60: 1393.Google Scholar
  11. 11.
    Clark, D. T., Peeling, J. and Colling, L., 1976 An experimental and theoretical investigation of the core level spectra of a series of amino acids, dipeptides and polypeptides. Biochim. Biophys. Acta 453: 533.Google Scholar
  12. 12.
    Scofield, J. H., 1973 in Theoretical cross-sections from 1–1500 KeV, Lawrence Livermore Laboratory Report UCRL-51326.Google Scholar
  13. 13.
    Gendler, S. J., Spicer, A. P., Lalani, E. -N, Duhig, T., Peat, N., Burchell, J., Pemberton, L., Boshell, M. and Taylor-Papadimitriou, J., 1991 Structure and biology of a carcinoma-associated mucin, MUC 1. Amer. Rev. Resp. Dis. 144: S42.Google Scholar
  14. 14.
    Hanisch, F. -G., Uhlenbruck, G., Peter-Katalinic, J., Egge, H., Dabrowski, J. and Dabrowski, U., 1989 Structures of neutral 0-linked polylactosaminoglycans on human skim milk mucins. J. Biol. Chem. 264: 872.Google Scholar
  15. 15.
    Gerken, T. A., Gupta, R and Jentoft, N., 1992 A novel approach for chemically deglycosylating 0-linked glycoproteins. The deglycosylation of submaxillary and respiratory mucins. Biochemistry 31: 639.Google Scholar
  16. 16.
    Gupta, R and Jentoft, N., 1989 Subunit structure of porcine submaxillary mucin. Biochemistry 28: 6114.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Kenneth E. Dombrowski
    • 1
  • Stephen E. Wright
    • 1
  • Jannine C. Birkbeck
    • 2
  • William E. Moddeman
    • 2
  1. 1.Department of Veterans Affairs Medical Center and Department of Internal MedicineTexas Tech University Health Sciences CenterAmarilloUSA
  2. 2.Pantex PlantMason & Hanger-Silas Mason Co., IncAmarilloUSA

Personalised recommendations