Identification and Characterization of Transducin Functional Cysteines, Lysines, and Acidic Residues by Group-Specific Labeling and Chemical Cross-Linking

  • José Bubis
  • Julio O. Ortiz
  • Carolina Möller
  • Enrique J. Milián


Guanine nucleotide binding proteins or G-proteins function as molecular switches in a diverse set of signaling pathways by coupling seven-helix transmembrane receptors to specific intracellular effectors (Kaziro et al., 1991; Dohlman et al., 1991). G-proteins are heterotrimers composed of a-, ß-, and y-subunits. Activation of the appropiate receptor causes a GDP molecule bound to the resting form of a G-protein to be exchanged for GTP. As a consequence, the G-protein dissociates to form the a-subunit complexed to GTP, and the ßy-dimer. The GTP-bound conformation of the a-subunit is capable of activating or inhibiting a variety of downstream effectors including enzymes as well as ion channels (Birnbaumer, 1992; Hepler & Gilman, 1992; Simon et al., 1991). The released ßy-complex can itself activate or modulate some effectors (Logothetis et al., 1987; Tang et al., 1991; Katz et al., 1992). A GTPase-controlled timing mechanism inherent in all a-subunits and, in some cases, modulated by other proteins (Berstein et al., 1992; Arshaysky & Bownds, 1992), returns the GTP-activated a-subunit to the inactive GDP-bound conformation. The a-subunit complexed to GDP reassociates with the ßy-complex and forms again the hetero-trimer in its resting state. Conklin & Bourne (1993) proposed a structural model for a general G-protein a-subunit, on the basis of biochemical, immunologic, and molecular genetic observations. This model provided a blurred but revealing view of the orientation of membrane-bound Ga with regard to Gpy, receptors, and effectors.


High Performance Liquid Chromatography Tryptic Peptide GTPase Activity Magnesium Acetate Guanine Nucleotide Binding Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arshaysky, V. Y, and Bownds, M. D., 1992, Regulation of deactivation of photoreceptor G protein by its target enzyme and by cGMP, Nature 357: 416–417.CrossRefGoogle Scholar
  2. Baehr, W., Devlin, M. J., and Applebury, M. L., 1979, Isolation and characterization of cGMP phosphodiesterase from bovine rod outer segments, J. BioL Chem. 254: 11669–11677.PubMedGoogle Scholar
  3. Baehr, W., Morita, E. A., Swanson, R. J., and Applebury, M. L., 1982, Characterization of bovine rod outer segment G-protein, J. Biol. Chem. 257: 6452–6460.PubMedGoogle Scholar
  4. Berstein, G., Blank, J. L., Jhon, D.-Y., Exton, J. H., Rhee, S. G., and Ross, E. M., 1992, Phospholipase C-01 is a GTPase-activating protein for Gy i, its physiologic regulator, Cell 70: 411–418.PubMedCrossRefGoogle Scholar
  5. Birnbaumer, L., 1992, Receptor-to-effector signaling through G proteins: Roles for ßy dimers as well as a subunits, Cell 71: 1069–1072.PubMedCrossRefGoogle Scholar
  6. Bubis, J., and Khorana, H. G., 1990, Sites of interaction in the complex between 3- and 7-subunits of transducin, J. Biol. Chem. 265: 12995–12999.PubMedGoogle Scholar
  7. Bubis, J., Milian, E. J., and Martinez, R., 1993, Identification of guanine nucleotide binding proteins from Trypanosoma cruzi, Biol. Res. 26: 177–188.PubMedGoogle Scholar
  8. Bubis, J., and Taylor, S. S., 1985, Covalent modification of both cAMP binding sites in cAMP-dependent protein kinase I by 8-azidoadenosine 3’,5’-monophosphate, Biochemistry 24: 2163–2170.PubMedCrossRefGoogle Scholar
  9. Bubis, J., and Taylor, S. S., 1987, Correlation of photolabeling with occupancy of cAMP binding sites in the regulatory subunit of cAMP-dependent protein kinase I, Biochemistry 26: 3478–3486.PubMedCrossRefGoogle Scholar
  10. Conklin, B. R., and Boume, H. R., 1993, Structural elements of Ga subunits that interact with Gpy, receptors, and effectors, Ce1173: 631–641.Google Scholar
  11. Conklin, B. R., Farfel, Z., Lustig, K. D., Julius, D., and Bourne, H. R., 1993, Substitution of three amino acids switches receptor specificity of Gqa to that of G1a, Nature 363: 274–276.Google Scholar
  12. Dhanasekaran, N., Wessling-Resnick, M., Kelleher, D. J., Johnson, G. L., and Ruoho, A. E., 1988, Mapping of the carboxyl terminus within the tertiary structure of transducin’s a subunit using the heterobifunctional cross-linking reagent, 125I-N-(3-iodo-4-azidophenylpropionamido)-S-(2-thiopyridyl) cysteine, J. Biol. Chem. 263: 17942–17950.PubMedGoogle Scholar
  13. Dohlman, H. G., Thomer, J., Caron, M. C., and Lefkowitz, R. L., 1991, Model systems for the study of seven-transmembrane-segment receptors, Ann u. Rev. Biochem. 60: 653–688.CrossRefGoogle Scholar
  14. Dratz, E. A., Furstenau, J. E., Lambert, C. G., Thireault, D. L., Rarick, H., Schepers, T., Pakhlevaniants, S., and Hamm, H. E., 1993, NMR structure of a receptor-bound G-protein peptide, Nature 363: 276–281.PubMedCrossRefGoogle Scholar
  15. Franke, R. R., Sakmar, T. P., Graham, R. M., and Khorana, H. G., 1992, Structure and Function in Rhodopsin. Studies of the interaction between the rhodopsin cytoplasmic domain and transducin, J. Biol. Chem. 267: 14767–14774.PubMedGoogle Scholar
  16. Fung, B. K.-K., 1983, Characterization of transducin from bovine retinal rod outer segments. I. Separation and reconstitution of the subunits, J. Biol. Chem. 258: 10495–10502.PubMedGoogle Scholar
  17. Hamm, H. E., Deretic, D., Arendt, A., Hargrave, P. A., Koenig, B., and Hofmann, K. P., 1988, Site of G proteinbinding to rhodopsin mapped with synthetic peptides from the a subunit, Science 241: 832–835.PubMedCrossRefGoogle Scholar
  18. Hargrave, P. A., and McDowell, J. H., 1992, Rhodopsin and phototransduction: A model system for G protein-linked receptors, FASEB J. 6: 2323–2331.PubMedGoogle Scholar
  19. Hepler, J. R., and Gilman, A. G., 1992, G Proteins, Trends. Biochem. Sci. 17: 383–387.PubMedCrossRefGoogle Scholar
  20. Hingorani, V. N., and Ho, Y.-K., 1987, Chemical modification of bovine transducin: Effect of fluorescein 5’-ispthiocyanate labeling on activities of the transducin a subunit, Biochemistry 26: 1633–1639.PubMedCrossRefGoogle Scholar
  21. Hingorani, V. N., Tobias, D. T., Henderson, J., T., and Ho, Y.-K., 1988, Chemical cross-linking of bovine retinal transducin and cGMP phosphodiesterase, J. Biol. Chem. 263: 6916–6926.Google Scholar
  22. Ho, Y.-K., and Fung, B. K.-K., 1984, Characterization of transducin from bovine retinal rod outer segments. The role of sulfhydryl groups, J. Biol. Chem. 259: 6694–6699.PubMedGoogle Scholar
  23. Hofmann, K. P., and Reichert, J., 1985, Chemical probing of the light-induced interaction between rhodopsin and G-protein. Near-infrared light-scattering and sulfhydryl modifications, J. Biol. Chem. 260: 7990–7995.PubMedGoogle Scholar
  24. Kaziro, Y., Itoh, H., Kozasa, T., Nakafuku, M., and Satoh, T., 1991, Structure and function of signal-transducing GTP-binding proteins, Annu. Rev. Biochem. 60: 349–400.PubMedCrossRefGoogle Scholar
  25. Katz, A., Wu, D., and Simon, M. I., 1992, Subunits ßy of heterotrimeric G protein activate 132 isoform of phospholipase C, Nature 360: 686–689.PubMedCrossRefGoogle Scholar
  26. Kühn, H., 1980, Light-and GTP-regulated interaction of GTPase and other proteins with bovine photoreceptor membranes, Nature 283: 587–589.PubMedCrossRefGoogle Scholar
  27. Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of head bacteriophage T4, Nature 227: 680–685.PubMedCrossRefGoogle Scholar
  28. Lagnado, L., and Baylor, D., 1992, Signal flow in visual transduction, Neuron 8: 995–1002.PubMedCrossRefGoogle Scholar
  29. Lambright, D. G., Noel, J. P., Hamm H E, and Sigler, P. B., 1994, Structural determinants for activation of the a-subunit of a heterotrimeric G protein, Nature 369: 621–628.PubMedCrossRefGoogle Scholar
  30. Logothetis, D. E., Kurachi, Y., Galper, J., Neer, E. J., and Clapham, D. E., 1987, The ßy subunits of GTP-binding proteins activate the muscarinic K* channel, Nature 325: 321–326.PubMedCrossRefGoogle Scholar
  31. Matsudaira, P., 1987, Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes, J. Biol. Chem. 262: 10035–10038.PubMedGoogle Scholar
  32. Noel, J. P., Hamm, H. E., and Sigler, P. B., 1993, The 2.2 A crystal structure of transducin-a complexed with GTPyS, Nature 366: 654–663.PubMedCrossRefGoogle Scholar
  33. Reichert, J., and Hofmann, K. P., 1984, Sulfhydryl group modification of photoreceptor G-protein prevents its light-induced binding to rhodopsin, FEBS Lett. 168: 121–124.PubMedCrossRefGoogle Scholar
  34. Shichi, H., and Somers, R. L., 1978, Light-dependent phosphorylation of rhodopsin. Purification and properties of rhodopsin kinase, J. Biol. Chem. 253: 7040–7046.PubMedGoogle Scholar
  35. Shichi, H., Yamamoto, K., and Somers, R. L., 1984, GTP binding protein: Properties and lack of activation by phosphorylated rhodopsin, Vision Res. 24: 1523–1531.PubMedCrossRefGoogle Scholar
  36. Simon, M. I., Strathmann, M. P., and Gautam, N., 1991, Diversity of G proteins in signal transduction, Science 252: 802–808.PubMedCrossRefGoogle Scholar
  37. Tang, W. J., Krupinski, J., and Gilman, A. G., 1991, Expression and characterization of calmodulin-activated (type I) adenylylcyclase, J. Biol. Chem. 266: 8595–8603.PubMedGoogle Scholar
  38. Toner-Webb, J., and Taylor, S. S., 1987, Inhibition of the catalytic subunit of cAMP-dependent protein kinase by dicyclohexylcarbodiimide, Biochemistry 26: 7371–7378.PubMedCrossRefGoogle Scholar
  39. Towbin, H., Staehlin, T., and Gordon, J., 1979, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications, Proc. Natl. Acad. Sci. U.S.A. 76: 43504354.Google Scholar
  40. Van Dop, C., Yamanaka, G., Steinberg, F., Sekura, R. D., Manclark, C. R., Stryer, L., and Bourne, H. R., 1984, ADP-ribosylation of transducin by pertussis toxin blocks the light-stimulated hydrolysis of GTP and cGMP in retinal photoreceptors, J. Biol. Chem. 259: 23–26.PubMedGoogle Scholar
  41. Weingarten, R., Ransnäs, L., Mueller, H., Sklar, L. A., and Bokoch, G. M., 1990, Mastoparan interacts with the carboxyl terminus of the a subunit of G„ J. Biol. Chem. 265: 11044–11049.PubMedGoogle Scholar
  42. Wessling-Resnick, M., and Johnson, G. L., 1989, Evidence for oligomeric forms of transducin alpha subunit: Formation of intermolecular alpha-alpha disulfide linkages, Biochem. Biophys. Res. Comm. 159: 651–657.PubMedCrossRefGoogle Scholar
  43. West, R. E., Moss, J., Vaughan, M., Liu, T., and Liu, T.-Y., 1985, Pertussis toxin-catalyzed ADP-ribosylation of transducin. Cysteine 347 is the ADP-ribose acceptor site, J Biol. Chem. 260: 14428–14430.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • José Bubis
    • 1
  • Julio O. Ortiz
    • 1
  • Carolina Möller
    • 2
  • Enrique J. Milián
    • 1
  1. 1.Departamento de Biología CelularUniversidad Simon BolívarCaracasVenezuela
  2. 2.Departamento de QuímicaUniversidad Simón BolívarCaracasVenezuela

Personalised recommendations