Peptide-Mass Fingerprinting as a Tool for the Rapid Identification and Mapping of Cellular Proteins

  • D. J. C. Pappin
  • D. Rahman
  • H. F. Hansen
  • W. Jeffery
  • C. W. Sutton


For more than 25 years protein identification has largely depended on automated Edman chemistry (Hewick et al., 1981) or western blotting with an appropriate monoclonal antibody. Several limitations, however, have never been overcome. The Edman procedure is inherently slow (generally one or two peptide or protein samples per day) and does not allow direct identification of many post-translational modifications. In addition, current detection limits are in the low-picomole to upper-femtomole range (Totty et al., 1992). Protein identification by western blotting can be extremely rapid, but requires the ready availability of an extensive library of suitable antibody probes. Large-format 2D-electrophoresis systems now make it possible to resolve several thousand cellular proteins from whole-cell lysates in the low- to upper-femtomole concentration range (Patton et al., 1990), presenting significant analytical challenges. The recent introduction of matrix-assisted laser-desorption (MALD) time-of-flight mass spectrometers (Karas and Hillenkamp, 1988) has led to the rapid analysis (at high sensitivity) of peptide mixtures. New strategies have been developed using a combination of protease digestion, MALD mass spectrometry and searching of peptide-mass databases that promise rapid acceleration in the identification of proteins (Henzel et al., 1993; Pappin et al., 1993; Mann et al., 1993; James et al., 1993; Yates et al., 1993).


Digestion Procedure Octyl Glucoside Imperial Cancer Research Fund Potential Cleavage Site Change Of200 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebersold, R.H., Leavitt, J., Saavedra, R.A., Hood, L.E., and Kent, S.B. (1987) Proc. Natnl. Acad. Sci. U.S.A. 84, 6970–6974.CrossRefGoogle Scholar
  2. Allen, G. in Sequencing of Proteins and Peptides 2nd. Edition, 73–104 ( Elsevier, Amsterdam, 1989 ).Google Scholar
  3. Baker, C.S., Dunn, M.J., and Yacoub, M.H. (1991) Electrophoresis 12, 342–348.PubMedCrossRefGoogle Scholar
  4. Bartlet-Jones, M., Jeffery, W., Hansen, H.F., and Pappin, D.J.C. (1994) Rapid Commun. Mass Spectrom., in press.Google Scholar
  5. Bauw, G., Van Damme, J., Puype, M., Vandekerckhove, J., Gesser, B., Ratz, G.P., Lauridsen, J.B., and Celis, J.E. (1989) Proc. Natnl. Acad. Sci. U.S.A. 86, 7701–7705.CrossRefGoogle Scholar
  6. Brune, D.C. (1992) Anal. Biochem. 207, 285–290.PubMedCrossRefGoogle Scholar
  7. Corbett, J.M., Wheeler, C., Dunn, M.J., Pappin, D.J.C., Pemberton, K.S., Sutton, C.W., and Cottrell, J.S. (1994) Poster presentation at the 9th Symposium of the Protein Society, San Diego.Google Scholar
  8. Coull, J.M., and Pappin, D.J.C. (1990) J. Protein Chem. 9, 259–260.Google Scholar
  9. Coull, J.M., Pappin, D.J.C., Mark, J., Aebersold, R.H., and Koster, H. (1991) Anal. Biochem. 194, 110–120.PubMedCrossRefGoogle Scholar
  10. Davison, A.J., and Davison, M.D. (1994) Virology, in press.Google Scholar
  11. Fernandez, J., DeMott, M., Atherton, D., and Mische, S.M. (1992) Anal. Biochem. 201, 255–264.PubMedCrossRefGoogle Scholar
  12. Fernandez, J., Andrews, L., and Mische, S.M. (1994) Anal. Biochem. 218, 112–117.PubMedCrossRefGoogle Scholar
  13. Henzel, W.J., Billeci, T.M., Stults, J.T., Wong, S.C., Grimely, C., and Watanabe, C. (1993) Proc. Natnl. Acad. Sci. U.S.A. 90, 5011–5015.CrossRefGoogle Scholar
  14. Hewick, R.M., Hunkapiller, M.W., Hood, L.E., and Dreyer, W.J. (1981) J. Biol. Chem. 256, 7990–7997.PubMedGoogle Scholar
  15. James, P., Quadroni, M., Carafoli, E., and Gonnet, G. (1993) Biochem. Biophys. Res. Commun. 195, 58–64.CrossRefGoogle Scholar
  16. Karas, M., and Hillenkamp, F. (1988) Anal. Chem. 60, 2299–2301.PubMedCrossRefGoogle Scholar
  17. Klose, J. (1975) Human Genetics 26, 231–243.PubMedGoogle Scholar
  18. Laemmli, U.K. (1970) Nature 227, 680–685.PubMedCrossRefGoogle Scholar
  19. Mann, M., Hojrup, P., and Roepstorff, P. (1993) Biol. Mass Spectrom. 22, 338–345.PubMedCrossRefGoogle Scholar
  20. Mock, K,K., Sutton, C.W., and Cottrell, J.S. (1992) Rapid Commun. Mass Spectrom. 6, 233–238.CrossRefGoogle Scholar
  21. Pappin, D.J.C., Coull, J.M., and Koster, H. (1990) Anal. Biochem. 187, 10–19.PubMedCrossRefGoogle Scholar
  22. Pappin, D.J.C., Hojrup, P., and Bleasby, A.J. (1993) Current Biology 3, 327–332.PubMedCrossRefGoogle Scholar
  23. Patterson, S.D., Hess, D., Yungwirth, T., and Aebersold, R. (1992) Anal. Biochem. 202, 193–203.PubMedCrossRefGoogle Scholar
  24. Patton, W.F., Pluskal, M.G., Skea, W.M., Buecker, J.L., Lopez, M.F., Zimmermann, R., Belanger, L.M., and Hatch P.D (1990) Biotechniques 8, 518–527.PubMedGoogle Scholar
  25. Srivastava, M., Mcbride, O.W., Fleming, P.J., Pollard, H.B., and Burns, A.L. (1990) J. Biol. Chem. 265, 14922–14931.PubMedGoogle Scholar
  26. Totty, N.F., Waterfield, M.D., and Hsuan, J.J. (1992) protein Sci. 1, 1215–1224.Google Scholar
  27. Yates, J.R., Speicher, S., Griffin, P.R., and Hunkapiller, T. (1993) Anal. Biochem. 214, 397–408.PubMedCrossRefGoogle Scholar
  28. Vogel, T., and Klose, J. (1992) Biochemical Genetics 30, 649–662.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • D. J. C. Pappin
    • 1
  • D. Rahman
    • 1
  • H. F. Hansen
    • 1
  • W. Jeffery
    • 1
  • C. W. Sutton
    • 2
  1. 1.Imperial Cancer ResearchLondonUK
  2. 2.Finnigan MAT Ltd.HertsUK

Personalised recommendations