Advertisement

Characterization of Proteins Separated by Gel Electrophoresis at the Primary Structure Level

  • Ruedi Aebersold
  • Lawrence N. Amankwa
  • Heinz Nika
  • David T. Chow
  • Edward J. Bures
  • Hamish D. Morrison
  • Daniel Hess
  • Michael Affolter
  • Julian D. Watts

Abstract

The investigation of cell differentiation, development, and signal transduction pathways are examples of current research projects which have in common the focus on complex, highly regulated systems consisting of numerous interacting elements. A complete understanding of such processes can only be achieved if the problem is approached globally, considering the temporal and spatial interactions of all the elements involved. This task is supported by large amounts of data stored and annotated in databases such as nucleic acid and amino acid sequence databases and two dimensional (2D)†† protein databases.

Keywords

Protein Tyrosine Phosphorylation Modify Residue Bovine Carbonic Anhydrase Determined Amino Acid Enzymatic Dephosphorylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

2D

two dimensional

2DE

2D gel electrophoresis

IEF

isoelectric focusing

SDS-PAGE

sodium dodecyl sulfate — polyacrylamide gel electrophoresis

RP-HPLC

reverse-phase high performance liquid chromatography

ESI-MS

electrospray ionization mass spectrometer/try

PITC 311

4-(3-pyridinylmethylaminocarboxypropyl)phenyl isothiocyanate

311 PTH

4-(3-pyridinylmethylaminocarboxypropyl)phenyl thiohydantoin

CE

capillary electrophoresis

PTM

post translational modification

ER

enzyme reactor.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebersold, R., Leavitt, J., Saavedra, R., Hood, L.E., Kent, S.B.H., 1987, Internal amino acid sequence analysis by in situ protease digestion on nitrocellulose of proteins separated by one-or two-dimensional gel electrophoresis, Proc. Natl. Acad. Sci. USA, 84, 6970–6974.PubMedCrossRefGoogle Scholar
  2. Aebersold, R., Watts, J.D., Morrison, H.D., Bures, E.J., 1991, Determination of the site of tyrosine phosphorylation at the low picomole level by automated solid-phase sequence analysis. Anal. Biochem., 199, 51–60.PubMedCrossRefGoogle Scholar
  3. Akrigg, D., Bleasby, A.J., Dix, N.I.M., Findlay, J.B.C., North, A.C.T., Parry-Smith, D., Wootton, J.C., Blundell, T.I., Gardner, S.P., Hayes, F., et al., 1988, Aprotein sequence/structure database, Nature, 335, 745–746.CrossRefGoogle Scholar
  4. Amankwa, L.N., Kuhr W.G. 1992, Trypsin-modified fused-silica capillary microreactor for peptide mapping by capillary zone electrophoresis. Anal. Chem. 64, 1610–1613.CrossRefGoogle Scholar
  5. Amankwa, L.N., Harder, K., Jirik, F., Aebersold, R., High sensitivity determination of sites of protein tyrosine phosphorylation by on-line capillary electrophoresis and electrospray ionization mass spectrometry. Protein Science (1995), 4: 113–125.PubMedCrossRefGoogle Scholar
  6. Bleasby, A.J., Wootton, J.C.,1990, Construction of validated, non-redundant composite protein databases, Protein Eng., 3, 153–159.Google Scholar
  7. Bures, E.J., Nika, H.,Chow, D.T., Hess, D., Morrison, H.D., Aebersold, R.,1994, Synthesis of the protein sequencing reagent 4-(3-pyridinylmethyl-aminocarboxypropyl) phenyl isothiocyanate and characterization of 4-(3-pyridinylmethylaminocarboxypropyl) phenylthiohydantoins, Anal.Biochem, (1995), 244: 364–372.CrossRefGoogle Scholar
  8. Collins, F., Galas, D.,1993, A new five-year plan for the U.S. Human Genome Project, Science, 262, 43–46 Cou11, J.M., Pappin, D.J.C., Mark, J., Aebersold, R., Koester, H. 1991. Functionalized membrane supports for covalent protein microsequence analysis, Anal. Biochem. 194, 110–120.Google Scholar
  9. Dujon, B., Alexandraki, D., Andr’e, B., Ansorge, W., Baladron, V., Ballesta, J.P., Banrevi, A., Bolle, P.A., Bolotin-Fukuhara, M., Bossier, P., et al., 1994, Complete DNA sequence of yeast chromosome XI, Nature, 369, 371–378.PubMedCrossRefGoogle Scholar
  10. Henzel, W.J., Billeci, T.M., Stults, J.T., Wong, S.C., Grimley,C., Watanabe, C., 1993, Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases, Proc.Natl.Acad.Sci.U.S.A., 90, 5011–5.Google Scholar
  11. Hess, D., Covey, T.C., Winz, R., Brownsey, R., Aebersold, R., 1993, Analytical and micropreparative peptide mapping by high-performance liquid chromatography/ion spray mass spectrometry of proteins purified by gel electrophoresis, Prot.Sci., 2, 1342–1351.CrossRefGoogle Scholar
  12. Hess, D., Nika, H., Chow, D.T., Bures, E.J., Morrison, H.D., Aebersold, R., 1994, Liquid chromatographyelectrospray ionization mass spectrometry of 4-(3-pyridinylmethylaminocarboxypropyl) phenylthiohydantoins,Anal.Biochem, (1995), 224: 373–381.CrossRefGoogle Scholar
  13. James, P., Quadroni, M., Carafoli, E., Gonnet, G., 1993, Protein identification by mass profile fingerprinting, Biochem.Biophys.Res.Commun.., 195 (1), 58–64.CrossRefGoogle Scholar
  14. Mann, M., Hojrup, P., Roepstorff, P., 1993, Use of mass spectrometric molecular weight information to identify proteins in sequence databases, Biol.Mass.Spectrom. 22, 338–45.Google Scholar
  15. Meyer, H.E., Hoffmann-Posorske, E., Donella-Deana, A., Korte, H., 1991 Sequence analysis of phosphotyrosine-containing peptides in Methods in Enzymology (Hunter, T., Sefton, B.M., Eds.), Vol. 201, Academic Press, Orlando, FL.Google Scholar
  16. Pappin, D.J.C., Hojrup, P., Bleasby, A.J., 1993, Rapid identification of proteins by peptide-mass fingerprinting, Current Biology, 3, 327–332.PubMedCrossRefGoogle Scholar
  17. Patterson, S.D., Hess, D., Yungwirth, T., Aebersold, R., 1992, High yield recovery of electroblotted proteins and cleavage fragments from a cationic polyvinylidine fluoride based membrane, Anal. Biochem., 202, 193–203.PubMedCrossRefGoogle Scholar
  18. Watts, J.D., Wilson, G., Ettehadieh, E., Kubanek, C.A., Astell, C.R., Marth, J.D., Aebersold, R., 1992, Purification and initial characterization of the lymphocyte-specific protein tyrosine kinase p56“ from a baculovirus expression system, J. Biol. Chem., 267, 901–907.PubMedGoogle Scholar
  19. Wettenhall, R.E.H., Aebersold, R., Hood, L.E., Kent, S.B.H., 1991, Solid-phase sequencing of 32P labeled phosphopeptides at picomole and subpicomole levels in Methods in Enzymology (Hunter, T., Sefton, B.M., Eds.), Vol. 201, Academic Press, Orlando, FL.Google Scholar
  20. Wold, F., In vivo chemical modification of proteins, 1981, Ann.Rev. Biochem., 50, 783–814.PubMedCrossRefGoogle Scholar
  21. Yates, J.R. III, Speicher, S., Griffin, P.R., Hunkapiller, T., 1993, Peptide mass maps: a highly informative approach to protein identification, Anal.Biochem., 214, 397–408.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Ruedi Aebersold
    • 1
  • Lawrence N. Amankwa
    • 2
  • Heinz Nika
    • 1
  • David T. Chow
    • 2
  • Edward J. Bures
    • 1
  • Hamish D. Morrison
    • 1
  • Daniel Hess
    • 1
  • Michael Affolter
    • 1
  • Julian D. Watts
    • 1
  1. 1.Department of Molecular BiotechnologyUniversity of WashingtonSeattleUSA
  2. 2.The Biomedical Research CentreUniversity of British ColumbiaVancouverCanada

Personalised recommendations