Skip to main content

Mechanisms of Excitation-Contraction Coupling Relevant to Skeletal Muscle Fatigue

  • Chapter
Fatigue

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 384))

Abstract

This review examines recent progress in elucidation of the excitation-contraction coupling in skeletal muscle with particular reference to processes which may play an important role in muscle fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashley CC & Moisescu DG (1973). The mechanism of the free calcium change in single muscle fibres during contraction. Journal of Physiology (London) 231, 23–25P.

    Google Scholar 

  • Ashley CC, Mulligan IP & Lea TJ (1991). Ca2+ and activation mechanisms in skeletal muscle. Quarterly Reviews of Biophysics 24, 1–73.

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ & Irvine RF (1989). Inositol phosphates and cell signalling. Nature 341, 197–205.

    Article  PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B, Kukulka OC, Lippold OCJ & Woods JJ (1982). The absence of neuromuscular transmission failure in sustained maximal voluntary contractions. Journal of Physiology (London) 330, 265–278.

    CAS  Google Scholar 

  • Bigland-Ritchie B & Woods JJ (1984). Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle & Nerve 7, 691–699.

    Article  CAS  Google Scholar 

  • Burton FL & Hutter OF (1990). Sensitivity to flow of intrinsic gating in inwardly rectifying potassium channel from mammalian skeletal muscle. Journal of Physiology (London) 424, 253–261.

    CAS  Google Scholar 

  • Catterall WA (1991). Excitation-contraction coupling in vertebrate skeletal muscle: a tale of two calcium channels. Cell 64, 871–874.

    Article  PubMed  CAS  Google Scholar 

  • Chandler WK, Rakowski RF & Schneider MF (1976). Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. Journal of Physiology (London) 254, 285–316.

    CAS  Google Scholar 

  • Chang CF, Gutiener LM, Meudina-Weilenmann C & Hosey MM (1991). Dihydropyridine-sensitive calcium channels from skeletal muscle. II, Functional effects of differential phosphorylation of channel subunits. Journal of Biological Chemistry 266, 16395–16400.

    PubMed  CAS  Google Scholar 

  • Chase PB & Kushmerick MJ (1988). Effects of pH on contraction of rabbit fast and slow skeletal muscle fibres. Biophysical Journal 53, 935–946.

    Article  PubMed  CAS  Google Scholar 

  • Claflin DR, Morgan DL, Stephenson DG & Julian FJ (1994). The intracellular Ca2+-transient and tension in frog skeletal muscle fibres measured with high temporal resolution. Journal of Physiology (London) 475, 319–325.

    CAS  Google Scholar 

  • Cooke R, Franks K, Luciani GB & Pate E (1988). The inhibition of rabbit skeletal muscle contraction by hydrogen ion and phosphate. Journal of Physiology (London) 395, 77–97.

    CAS  Google Scholar 

  • Dulhunty AF (1992). The voltage-activation of contraction in skeletal muscle. Progress in Biophysics and Molecular Biology 57, 181–223.

    Article  PubMed  CAS  Google Scholar 

  • Ebashi S (1991). Excitation-contraction coupling and the mechanism of muscle contraction. Annual Review of Physiology 53, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Edman KAP & Lou F (1990). Changes in force and stiffness induced by fatigue and intracellular acidification in frog muscle fibres. Journal of Physiology (London) 424, 133–149.

    CAS  Google Scholar 

  • Edwards RHT (1983). Biochemical bases of fatigue in exercise performance: catastrophe theory of muscular fatigue. In: Knuttgen HG (ed.), Biochemistry of Exercise, pp. 3–28. Champaign, IL: Human Kinetics.

    Google Scholar 

  • El-Hayek R, Valdivia C, Valdivia HH, Hogan K & Coronado R (1993). Palmitoyl carnitine: Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by palmitoyl carnitine and related long chain fatty acids derivatives. Biophysical Journal 65, 779–789.

    Article  PubMed  CAS  Google Scholar 

  • Endo M (1985). Calcium release from sarcopiasmic reticulum. Current Topics in Membranes and Transport 25, 181–230.

    Article  CAS  Google Scholar 

  • Fabiato A (1985). Time and calcium dependence on activation and inactivation of calcium induced release of calcium from the sarcopiasmic reticulum of a skinned canine cardiac Purkinje cell. Journal of General Physiology 85, 247–289.

    Article  PubMed  CAS  Google Scholar 

  • Fink R & Lüttgau HCh (1976). An evaluation of the membrane constants and the potassium conductance in metabolically exhausted muscle fibres. Journal of Physiology (London) 263, 215–238.

    CAS  Google Scholar 

  • Fitts RH (1994). Cellular mechanisms of muscle fatigue. Physiological Reviews 74, 49–94.

    Article  PubMed  CAS  Google Scholar 

  • Franzini-Armstrong C & Jorgensen AO (1994). Structure and development of E-C coupling units in skeletal muscle. Annual Review of Physiology 56, 509–534.

    Article  PubMed  CAS  Google Scholar 

  • Fruen BR, Mickelson JR, Shomer NH, Roghair TJ & Louis CF (1994). Regulation of the sarcopiasmic reticulum ryanodine receptor by inorganic phosphate. Journal of Biological Chemistry 269, 192–198.

    PubMed  CAS  Google Scholar 

  • Fryer MW, Owen VJ, Lamb GD & Stephenson DG (1995). Effects of creatine phosphate and Pi on force development and Ca2+ movements in rat skinned skeletal muscle fibres. Journal of Physiology (London) 482, 123–140

    CAS  Google Scholar 

  • Glossmann H & Striessnig J (1990). Molecular properties of calcium channels. Reviews in Physiology, Biochemistry and Pharmacology 114, 1–105.

    Article  CAS  Google Scholar 

  • Godt RE & Nosek TM (1989). Changes of intracellular milieu with fatigue or hypoxia depress contraction of skinned rabbit skeletal and cardiac muscle. Journal of Physiology (London) 412, 155–180.

    CAS  Google Scholar 

  • Gonzales-Serratos H, Somlyo AV, McClellan G, Shuman H, Borrero LM & Somlyo AP (1978). Composition of vacuoles and sarcopiasmic reticulum in fatigued muscle: electron probe analysis. Proceedings of the National Academy of Sciences USA 75, 1329–1333.

    Article  Google Scholar 

  • Györke S (1993). Effects of repeated tetanic stimulation on excitation-contraction coupling in cut muscle fibres of the frog. Journal of Physiology (London) 464, 699–710.

    Google Scholar 

  • Györke S, Velez P, Suarez-Isla B & Fill M (1994). Activation of single cardiac and skeletal ryanodine receptor channels by flash photolysis of caged Ca2+. (Biophysical Journal) 66, 1879–18

    Article  PubMed  Google Scholar 

  • Hain J, Schindler H, Nath S & Fleischer S (1993). Phosphorylation of the skeletal muscle calcium release channel removes block by magnesium ions. Biophysical Journal 64, A151.

    Google Scholar 

  • Han JW, Thieleczek R, Varsßnyi M & Heilmeyer LMG (1992). Compartmentalized ATP synthesis in skeletal muscle triads. Biochemistry 31, 377–384.

    Article  PubMed  CAS  Google Scholar 

  • Herrmann-Frank A & Varsßnyi M (1993). Enhancement of Ca2+ release channel activity by phosphorylation of the skeletal muscle ryanodine receptor. FEBS Letters 333, 237–242.

    Article  Google Scholar 

  • Hille B (1992). Ionic Channels of Excitable Membranes, pp. 115–139. Sutherland, MA: Sinauer.

    Google Scholar 

  • Inesi G & De Meis L (1989). Regulation of steady-state filling in sarcoplasmic reticulum. Journal of Biological Chemistry 264, 5929–5936.

    PubMed  CAS  Google Scholar 

  • Jacquemond V, Csernock L, Klein MG & Schneider MF (1991). Voltage-gated and calcium-gated release during depolarization of skeletal muscle. Biophysical Journal 60, 867–873.

    Article  PubMed  CAS  Google Scholar 

  • Kabbara AA & Stephenson DG (1994). Effects of Mg2+ on Ca2+ handling by the sarcoplasmic reticulum in skinned skeletal and cardiac muscle fibres. Pflügers Archiv 428, 331–339.

    Article  PubMed  CAS  Google Scholar 

  • Kim KC, Caswell AH, Talvenheimo JA & Brandt NR (1990). Isolation of a terminal cisterna protein which may link the dihydropyridine receptor to the junctional foot protein in skeletal muscle. Biochemistry 29, 9283–9289.

    Google Scholar 

  • Lamb GD (1992). DHP receptors and excitation-contraction coupling. Journal of Muscle Research and Cell Motility 13, 394–405.

    Article  PubMed  CAS  Google Scholar 

  • Lamb GD (1993). Ca2+-inactivation, Mg2+-inhibition and malignant hyperthermia. Journal of Muscle Research and Cell Motility 14, 554–556.

    Article  PubMed  CAS  Google Scholar 

  • Lamb GD, Fryer MW & Stephenson DG (1994a). Technical comment: Ca2+-induced Ca2+-release in response to flash photolysis. Science 263, 986–987.

    Article  PubMed  Google Scholar 

  • Lamb GD, Junankar P & Stephenson DG (1994b). Abolition of excitation-contraction coupling in skeletal muscle by raised intracellular [Ca2+]. Proceedings of the Australian Physiological and Pharmacological Society 25, 76P.

    Google Scholar 

  • Lamb GD, Posterino GS & Stephenson DG (1994c). Effects of heparin on excitation-contraction coupling in skeletal muscle fibres of toad and rat. Journal of Physiology (London) 474, 319–329.

    CAS  Google Scholar 

  • Lamb GD, Recupero E & Stephenson DG (1992). Effect of myoplasmic pH on excitation-contraction coupling in skeletal muscle fibres of the toad. Journal of Physiology (London) 448, 211–224.

    CAS  Google Scholar 

  • Lamb GD & Stephenson DG (1990). Control of calcium release and the effect of ryanodine in skinned muscle fibres of the toad. Journal of Physiology (London) 423, 519–542.

    CAS  Google Scholar 

  • Lamb GD & Stephenson DG (1991a). Effect of Mg2+ on the control of Ca2+ release in skeletal muscle fibres of the toad. Journal of Physiology (London) 434, 507–528.

    CAS  Google Scholar 

  • Lamb GD & Stephenson DG (1991b). Excitation-contraction coupling in skeletal muscle fibres of rat in the presence of GTPγS. Journal of Physiology (London) 444, 65–84.

    CAS  Google Scholar 

  • Lamb GD & Stephenson DG (1992). Importance of Mg2+ in excitation-contraction coupling in skeletal muscle. News in Physiological Sciences 7, 270–274.

    CAS  Google Scholar 

  • Lamb GD & Stephenson DG (1994). Effect of intracellular pH and [Mg2+] on excitation-contraction coupling in skeletal muscle fibres of the rat. Journal of Physiology (London) 478, 331–339.

    CAS  Google Scholar 

  • Lamb GD, Stephenson DG & Stienen GJM (1993). Effects of osmolality and ionic strength on the mechanism of Ca2+ release in skinned skeletal muscle fibres of the toad. Journal of Physiology (London) 464, 629–648.

    CAS  Google Scholar 

  • Lee JA, Westerblad H & Allen DG (1991). Changes in tetanic and resting [Ca2+]i during fatigue and recovery of single muscle fibres from Xenopus laevis. Journal of Physiology (London) 433, 307–326.

    CAS  Google Scholar 

  • Lehrer SS (1994). The regulatory switch of the muscle thin filament: Ca2+ or myosin heads? Journal of Muscle Research and Cell Motility 15, 232–236.

    Article  PubMed  CAS  Google Scholar 

  • Light PE, Comtois AS & Renaud JM (1994). The effect of glibenclamide on frog skeletal muscle: evidence for KATP + channel activation during fatigue. Journal of Physiology (London) 475, 495–507.

    CAS  Google Scholar 

  • Lüttgau HCh & Stephenson DG (1986). Ion movements in skeletal muscle in relation to the activation of contraction. In: Andreoli TE, Hoffman JF, Fanestil DD Schultz SG (eds.), Physiology of Membrane Disorders, pp. 449–468. New York: Plenum Publishing Corporation.

    Chapter  Google Scholar 

  • Meissner G (1994). Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annual Review of Physiology 56, 485–508.

    Article  PubMed  CAS  Google Scholar 

  • Meissner G, Darling E & Eveleth J (1986). Kinetics of rapid Ca2+ release by sarcoplasmic reticulum. Effects of Ca2+, Mg2+ and adenine nucleotides. Biochemistry 25, 236–244.

    Article  PubMed  CAS  Google Scholar 

  • Melzer W, Herrmann-Frank A & Lüttgau HCh (1995). The role of Ca2+ ions in excitation-contraction coupling in skeletal muscle fibres. Biochimica et Biophysica Acta In press.

    Google Scholar 

  • Metzger JM & Fitts RH (1986). Fatigue from high-and low-frequency muscle stimulation: role of sarcolemma action potentials. Experimental Neurology 93, 320–333.

    Article  PubMed  CAS  Google Scholar 

  • Metzger JM & Moss RL (1987). Greater hydrogen ion induced depression of tension and velocity in skinned single fibres of rat fast than slow muscles. Journal of Physiology (London) 393, 727–742.

    CAS  Google Scholar 

  • Pragnell M, De Waard M, Mori Y, Tanabe T, Snutch TP & Campbell KP (1994). Calcium channel beta-subunit binds to a conserved motif in the I–II cytoplasmic linker of the alpha 1-subunit. Nature 368, 67–70.

    Article  PubMed  CAS  Google Scholar 

  • Rios E & Pizarro G (1991). Voltage sensor of excitation-contraction coupling in skeletal muscle. Physiological Reviews 71, 849–908.

    PubMed  CAS  Google Scholar 

  • Rios E, Pizarro G & Stefani E (1992). Charge movement and the nature of signal transduction in skeletal muscle excitation-contraction coupling. Annual Review of Physiology 54, 109–133.

    Article  PubMed  CAS  Google Scholar 

  • Rousseau E & Pinkos J (1990). pH modulates conducting and gating behaviour of single calcium release channels. Pflügers Archiv 415, 645–647.

    Article  PubMed  CAS  Google Scholar 

  • Rüegg JC (1992). Calcium in Muscle Contraction. Cellular and Molecular Physiology, 2nd Edition, 354pp. Berlin, Heidelberg: Springer Verlag.

    Book  Google Scholar 

  • Sandow A (1965). Excitation-contraction coupling in skeletal muscle. Pharmacological Reviews 17, 265–320.

    PubMed  CAS  Google Scholar 

  • Schneider MF (1994). Control of calcium release in functioning muscle fibres. Annual Review of Physiology 56, 463–484.

    Article  PubMed  CAS  Google Scholar 

  • Sculptoreanu A, Scheuer T & Catterall WA (1993). Voltage-dependent potentiation of L-type Ca2+ channels due to phosphorylation by cAMP-dependent protein kinase. Nature 364, 240–243.

    Article  PubMed  CAS  Google Scholar 

  • Sjøgaard G (1991). Role of exercise-induced potassium fluxes underlying muscle fatigue: a brief review. Canadian Journal of Physiology and Pharmacology 69, 238–245.

    Article  PubMed  Google Scholar 

  • Stein P & Palade P (1988). Sarcoballs: direct access to sarcoplasmic reticulum Ca2+-channels in skinned frog muscle fibres. Biophysical Journal 54, 357–363.

    Article  PubMed  CAS  Google Scholar 

  • Stephenson DG & Williams DA (1981). Calcium-activated force responses in fast-and slow-twitch skinned muscle fibres from the rat. Journal of Physiology (London) 317, 281–302.

    CAS  Google Scholar 

  • Stephenson DG & Williams DA (1985). Temperature-dependent calcium sensitivity changes in skinned muscle fibres of rat and toad. Journal of Physiology (London) 360, 1–12.

    CAS  Google Scholar 

  • Stephenson GMM & Stephenson DG(1993). Endogenous MLC2 phosphorylation and Ca2+-activated force in mechanically skinned skeletal muscle fibres of the rat. Pflügers Archiv 424, 30–38.

    Article  PubMed  CAS  Google Scholar 

  • Stern MD & Lakatta EG (1992). Excitation-contraction coupling in the heart: the state of the question. FASEB Journal 6, 3092–3100.

    PubMed  CAS  Google Scholar 

  • Stryer L (1988). Biochemistry, 3rd Edition, pp. 634–635. New York: Freeman and Co.

    Google Scholar 

  • Tanabe T, Beam KG, Adams BA, Nicodome T & Numa S (1990). Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature 346, 567–569.

    Article  PubMed  CAS  Google Scholar 

  • Wang J & Best PM (1992). Inactivation of the sarcoplasmic reticulum by protein kinase. Nature 359, 739–741.

    Article  PubMed  CAS  Google Scholar 

  • Westerblad H & Allen DG (1991). Changes in myoplasmic calcium concentration during fatigue in single mouse muscle fibres. Journal of General Physiology 98, 615–635.

    Article  PubMed  CAS  Google Scholar 

  • Westerblad H & Allen DG (1992). Myoplasmic free Mg2+ concentration during repetitive stimulation of single fibres from mouse skeletal muscle. Journal of Physiology (London) 453, 413–434.

    CAS  Google Scholar 

  • Westerblad H, Duty S & Allen DG (1993). Intracellular calcium concentration during low-frequency fatigue in isolated single fibres of mouse skeletal muscle. Journal of Applied Physiology 75, 382–388.

    PubMed  CAS  Google Scholar 

  • Westerblad H, Lee JA, Lännergren J & Allen DG (1991). Cellular mechanisms of fatigue in skeletal muscle. American Journal of Physiology 261, C195–C209.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stephenson, D.G., Lamb, G.D., Stephenson, G.M.M., Fryer, M.W. (1995). Mechanisms of Excitation-Contraction Coupling Relevant to Skeletal Muscle Fatigue. In: Gandevia, S.C., Enoka, R.M., McComas, A.J., Stuart, D.G., Thomas, C.K., Pierce, P.A. (eds) Fatigue. Advances in Experimental Medicine and Biology, vol 384. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1016-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1016-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1018-9

  • Online ISBN: 978-1-4899-1016-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics