Fatigue pp 495-512 | Cite as

Fatigue Brought on by Malfunction of the Central and Peripheral Nervous Systems

  • A. J. McComas
  • R. G. Miller
  • S. C. Gandevia
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 384)


Increased fatigability necessarily occurs in every patient with muscle weakness, regardless of whether the latter is due to a central or peripheral neurological disorder. The tendency for disuse to increase fatigability, as a secondary phenomenon, must also be considered; disuse affects both motoneuron recruitment and the biochemical and physiological properties of the muscle fibers. In recent studies impaired recruitment has been observed in postpolio patients, while patients with multiple sclerosis or spinal cord injury have shown, in addition, altered neuromuscular function. Findings are also presented in ALS and the chronic fatigue syndrome. In general, the most dramatic increases in fatigability take place in disorders of the peripheral nervous system and almost any cell component can be incriminated. There is a need to study fatigability systematically in neurology and rehabilitation.


Amyotrophic Lateral Sclerosis Motor Unit Chronic Fatigue Syndrome Amyotrophic Lateral Sclerosis Patient Periodic Paralysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen GM, Gandevia SC, Neering IR, Hickie I, Jones R & Middleton J (1994) Muscle performance, voluntary activation and perceived effort in normal subjects and patients with prior poliomyelitis. Brain 117, 661–670.PubMedCrossRefGoogle Scholar
  2. Argov Z & Bank WI (1991). Phosphorus magnetic resonance spectroscopy (31P MRS) in neuromuscular disorders. Annals of Neurology 30, 90–97.PubMedCrossRefGoogle Scholar
  3. Arnold DL, Bore PJ, Radda GK, Styles P & Taylor D (1984). Excessive intracellular acidosis of skeletal muscles in exercise in a patient with a post viral exhaustion fatigue syndrome. Lancet 1(8391), 1367–1369.PubMedCrossRefGoogle Scholar
  4. Barnes PRJ, Taylor DJ, Kemp GJ & Radda GK (1993). Skeletal muscle bioenergetics in the chronic fatigue syndrome. Journal of Neurology Neurosurgery and Psychiatry 56, 679–683.CrossRefGoogle Scholar
  5. Bigland-Ritchie B, Cafarelli E & Vøllestad NK (1986). Fatigue of submaximal contractions. Acta Physiologica Scandinavica 128 (suppl 556), 137–148.Google Scholar
  6. Bruno RL, Frick NM & Cohen J (1991). Polioencephalitis, stress, and the etiology of post-polio sequelae. Orthopedics 14, 1269–1275.PubMedGoogle Scholar
  7. Connolly S, Smith DG, Doyle D & Rowler CJ (1993). Chronic fatigue: electromyographic and neuropathological evaluation. Journal of Neurology 240, 435–438.PubMedCrossRefGoogle Scholar
  8. Cooper RG, Stokes MJ & Edwards RHT (1989). Myofibrillar activation failure in McArdle’s disease. Journal of Neurological Sciences. 93, 1–10.CrossRefGoogle Scholar
  9. Denys EH & Norris FH (1979). Amyotrophic lateral sclerosis: impairment of neurologic transmission. Archives of Neurology 36, 202–205.PubMedCrossRefGoogle Scholar
  10. Dolmage T & Cafarelli E (1991). Rate of fatigue during repeated submaximal contractions of human quadriceps muscle. Canadian Journal of Physiology and Pharmacology 69, 1410–1415.PubMedCrossRefGoogle Scholar
  11. Duchateau J & Hainaut K (1987). Electrical and mechanical changes in immobilized human muscle. Journal of Applied Physiology 62, 2168–2173.PubMedGoogle Scholar
  12. Dyken ML, Smith DM & Peake R (1967). An electromyographic diagnostic screening test in McArdle’s disease and a case report. Neurology 17, 45–50.PubMedCrossRefGoogle Scholar
  13. Ekstedt J & Stålberg E (1967). Myasthenia gravis. Diagnostic aspects by a new electrophysiological method. Opuscula Medica 12, 73–76.Google Scholar
  14. Fenton J, Garner S & McComas AJ (1991). Abnormal M-wave responses during exercise in myotonic muscular dystrophy. A Na+, K+-pump defect? Muscle & Nerve 14, 79–84.CrossRefGoogle Scholar
  15. Fontaine B, Khurana TS, Hoffman EP, Bruns GAP, Hains JL, Trofatter JA, Hanson MP, Rich J, McFarlane H, McKenna Yasek D, Romano D, Gusella JF & Brown RH (1990). Hyperkalemic periodic paralysis and the adult muscle sodium channel a-subunit gene. Science 250, 1000–1002.PubMedCrossRefGoogle Scholar
  16. Fuglsang-Frederiksen A & Scheel U (1978). Transient decrease in number of motor units after immobilization in man. Journal of Neurology Neurosurgery and Psychiatry 41, 924–929.CrossRefGoogle Scholar
  17. Gibson H, Carroll M, Clague JE & Edwards RH (1993). Exercise performance and fatiguability in patients with chronic fatigue syndrome. Journal of Neurology Neurosurgery and Psychiatry 56, 993–998.CrossRefGoogle Scholar
  18. Gordon T & Stein RB (1982). Reorganization of motor unit properties in reinnervated muscles of the cat. Journal of Neurophysiology 48, 1175–1190.PubMedGoogle Scholar
  19. Ito Y, Miledi R, Molenaar PC, Vincent A, Polak RL, Van Gelder M & Davis JN (1976). Acetylcholine in human muscle. Proceedings of the Royal Society of London B Biological Series 192, 475–480.CrossRefGoogle Scholar
  20. Jamal GA & Hansen S (1985). Electrophysiological studies in the postviral fatigue syndrome. Journal of Neurology Neurosurgery and Psychiatry 48, 691–694.CrossRefGoogle Scholar
  21. Jamal GA & Hansen S (1989). Postviral fatigue syndrome: evidence for underlying organic disturbance in the muscle fibre. European Neurology 29, 273–276.PubMedCrossRefGoogle Scholar
  22. Kent-Braun JA, Sharma KR, Miller RG & Weiner MW (1994). Post-exercise phosphocreatine resynthesis is slowed in multiple sclerosis. Muscle & Nerve 17, 835–841.CrossRefGoogle Scholar
  23. Kent-Braun JA, Sharma KR, Weiner MW, Massie B & Miller RG (1993). Central basis of muscle fatigue in chronic fatigue syndrome. Neurology 43, 125–131.PubMedCrossRefGoogle Scholar
  24. Koch MC, Steinmeyer K, Lorenz C, Ricker K, Wolf F, Otto M, Zoll B, Lehmann-Horn F, Grzechik KH & Jentsch TJ (1992). The skeletal muscle chloride channel in dominant and recessive human myotonia. Science 257, 797–800.PubMedCrossRefGoogle Scholar
  25. Kuiack S & McComas AJ (1992). Transient hyperpolarization of non-contracting muscle fibres in anaesthetized rats. Journal of Physiology (London) 454, 609–618.Google Scholar
  26. Lenman AJR, Tulley F, Vrbová G, Dimitrijevic M & Towle JA (1989). Muscle fatigue in some neurological disorders. Muscle & Nerve 12, 938–942.CrossRefGoogle Scholar
  27. Linssen WH, Stegeman DF, Joosten EM, Merks HJ, ter Laak HJ, Binkhorst RA, & Notermans SL (1991). Force and fatigue in human type I muscle fibres. A surface EMG study in patients with congenital myopathy and type I fibre predominance. Brain 114, 2123–2132.PubMedCrossRefGoogle Scholar
  28. Lloyd AR, Gandevia SC & Hales JP (1991). Muscle performance, voluntary activation, twitch properties and perceived effort in normal subjects and patients with the chronic fatigue syndrome. Brain 114, 85–98.PubMedGoogle Scholar
  29. Lloyd AR, Hales JP & Gandevia SC (1988). Muscle strength, endurance and recovery in the post-infection fatigue syndrome. Journal of Neurology Neurosurgery and Psychiatry 51, 1316–1322.CrossRefGoogle Scholar
  30. Luft R, Ikkos D, Palmieri G, Ernster L & Afzelius B (1962). A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial control-a correlated clinical, biochemical and morphological study. Journal of Clinical Investigation 41, 1776–1804.PubMedCrossRefGoogle Scholar
  31. Maier A, Crocket JL, Simpson DR, Saubert CW & Edgerton VR (1976). Properties of immobilized guinea pig hindlimb muscles. American Journal of Physiology 231, 1520–1526.PubMedGoogle Scholar
  32. McArdle B (1951). Myopathy due to a defect in muscle glycogen breakdown. Clinical Science 10, 13–33.Google Scholar
  33. McComas AJ, Kereshi S & Quinlan J (1983). A method for detecting functional weakness. Journal of Neurology Neurosurgery and Psychiatry 46, 280–282.CrossRefGoogle Scholar
  34. McComas AJ, Sica REP, Campbell MJ & Upton ARM (1971). Functional compensation in partially denervated muscles. Journal of Neurology Neurosurgery and Psychiatry 34, 453–460.CrossRefGoogle Scholar
  35. McManis PG, Lambert EH & Daube JR (1986). The exercise test in periodic paralysis. Muscle & Nerve 9, 704–710.CrossRefGoogle Scholar
  36. Miller RG, Boska MD, Moussavi RS, Carson PJ & Weiner MW (1988). 31P nuclear magnetic resonance studies of high energy phosphates and pH in human muscle fatigue. Journal of Clinical Investigation 81, 1190–1196.PubMedCrossRefGoogle Scholar
  37. Miller RG, Giannini D, Milner-Brown HS, Layzer RB, Koretsky AP, Hooper D, & Weiner MW (1987). Effects of fatiguing exercise on high-energy phosphates, force and EMG: evidence for three phases of recovery. Muscle & Nerve 10, 810–821.CrossRefGoogle Scholar
  38. Miller RG, Green AT, Moussavi RS, Carson PJ & Weiner MW (1990). Excessive muscle fatigue in patients with spastic paraparesis. Neurology 40, 1271–1274.PubMedCrossRefGoogle Scholar
  39. Mommaerts WFHM, Illingworth B, Pearson CM, Guillorg RJ & Seraydarian K (1959). A functional disorder of muscle associated with the absence of phorsphorylase. Proceedings of the National Academy of Sciences of the United States of America 45, 791–797.PubMedCrossRefGoogle Scholar
  40. Morgan-Hughes JA, Darveniza P & Kahn SA (1977). A mitochondrial myopathy characterized by a deficiency in reducible cytochrome b. Brain 100, 617–640.PubMedCrossRefGoogle Scholar
  41. Moussavi RS, Carson PJ, Boska MD, Weiner MW & Miller RG (1989). Nonmetabolic fatigue in exercising human muscle. Neurology 39, 1222–1226.PubMedCrossRefGoogle Scholar
  42. Nicklin J, Kami Y & Wiles CM (1987). Shoulder abduction fatigability. Journal of Neurology Neurosurgery and Psychiatry 50, 423–427.CrossRefGoogle Scholar
  43. Petit J & Gioux M (1993). Properties of motor units after immobilization of cat peroneus longus muscles. Journal of Applied Physiology 74, 1131–1139.PubMedCrossRefGoogle Scholar
  44. Rafuse VF, Gordon T & Oroczo R (1992). Proportional enlargement of motor units after partial denervation of cat triceps surae muscles. Journal of Neurophysiology. 68, 1261–1276PubMedGoogle Scholar
  45. Rice CL, Volmer TL & Bigland-Ritchie B (1992). Neuromuscular responses of patients with multiple sclerosis. Muscle & Nerve 15, 1123–1132.CrossRefGoogle Scholar
  46. Robinson GA, Enoka RM & Stuart DG (1991). Immobilization-induced changes in motor unit force and fatigability in the cat. Muscle & Nerve 14, 560–573.Google Scholar
  47. Ross BD, Radda GK, Gadian DG, Rocker G, Esiri M & Falconer-Smith J (1981). Examination of a case of suspected McArdle’s syndrome by 31P nuclear magnetic resonance. New England Journal of Medicine 304, 1338–1343.PubMedCrossRefGoogle Scholar
  48. Rutherford OM & White PD (1991). Human quadriceps strength and fatiguability in patients with post-viral fatigue. Journal of Neurology Neurosurgery and Psychiatry 54, 961–964.CrossRefGoogle Scholar
  49. Sanjak M, Paulson D, Sufit R, Reddan W, Beaulieu D, Erickson L, Shug A & Brooks BR (1987). Physiologic and metabolic response to progressive and prolonged exercise in amyotrophic lateral sclerosis. Neurology 37, 1217–1220.PubMedCrossRefGoogle Scholar
  50. Sharma KR, Kent-Braun J, Mynhier MA, Weiner MW & Miller RG (1994). Excessive muscular fatigue in the postpoliomyelitis syndrome. Neurology 44, 642–646.PubMedCrossRefGoogle Scholar
  51. Stokes MJ, Cooper RG & Edwards RHT (1988). Normal muscle strength and fatiguability in patients with effort syndromes. British Medical Journal 297, 1014–1017.PubMedCrossRefGoogle Scholar
  52. Trojan DA, Gendron D & Cashman NR (1993). Anticholinesterase-responsive neuromuscular junction transmission defects in post-poliomyelitis. Journal of Neurological Sciences 114, 170–177.CrossRefGoogle Scholar
  53. Van Ekeren GJ, Cornelissen EAM, Stadhouders AM & Sengers RCA. (1991). Increased volume density of peripheral mitochondrion in skeletal muscle of children with exercise intolerance. European Journal of Pediatrics 150, 744–750.PubMedCrossRefGoogle Scholar
  54. Vincent A, Lang B & Newsom-Davis J (1989). Autoimmunity to the voltage-gated calcium channel underlies the Lambert-Eaton myasthenic syndrome, a paraneoplastic disorder. Trends in Neuroscience 12, 496–502.CrossRefGoogle Scholar
  55. Westgaard R & Lomo T (1988). Control of contractile properties within adaptive ranges by patterns of impulse activity in the rat. Journal of Neuroscience 8, 4415–4426.PubMedGoogle Scholar
  56. Wiles CM, Jones DA & Edwards RHT (1981). Fatigue in human metabolic myopathy. Ciba Foundation Symposium 82, 264–282.PubMedGoogle Scholar
  57. Wong R, Lopaschuk F, Zhu G, Walker D, Catellier D, Burton D, Teo K, Collins-Nakai R & Montague T (1993). Skeletal muscle metabolism in the chronic fatigue syndrome. Chest 102, 1716–1722.CrossRefGoogle Scholar
  58. Yousef GE, Bell EJ, Mann GF, Murugesan V, Smith DG & McCartney RA (1988). Chronic enterovirus infection in patients with post viral fatigue syndrome. Lancet 1(8578), 146–150.PubMedCrossRefGoogle Scholar
  59. Zochodne DW, Thompson RT, Driedger AA, Strong MJ, Gravelle D & Bolton CF (1988). Metabolic changes in human muscle denervation: topical 31P NMR spectroscopy studies. Magnetic Resonance in Medicine 7, 373–383.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • A. J. McComas
    • 1
  • R. G. Miller
    • 2
  • S. C. Gandevia
    • 3
  1. 1.Department of Biomedical SciencesMcMaster UniversityHamiltonCanada
  2. 2.Department of NeurologyCalifornia Pacific Medical CenterSan FranciscoUSA
  3. 3.Prince of Wales Medical Research InstituteSydneyAustralia

Personalised recommendations