Skip to main content
Book cover

Fatigue pp 147–160Cite as

Human Motor Units Studied by Spike-Triggered Averaging and Intraneural Motor Axon Stimulation

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 384))

Abstract

When low-threshold motor units are activated at low rates during sustained, weak voluntary contractions, most unit force profiles exhibit fatigue but some show force potentiation. These data, obtained by spike-triggered averaging, are compared to the fatigue resistance of human motor units activated at twitch and tetanic rates by intraneural motor axon stimulation. With the latter technique, representative sampling of the motor units from one muscle group shows that unit force fatigue or potentiation at submaximal frequencies, and contractile rate changes, dictate the shifts in unit force-frequency relationships. More diverse fatigue protocols, and when possible, careful comparisons of data obtained by both these techniques, are needed to further our understanding of the force and frequency changes of single motor units during voluntary and stimulated exercise.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bellemare F, Woods JJ, Johansson R & Bigland-Ritchie B (1983). Motor-unit discharge rates in maximal voluntary contractions of three human muscles. Journal of Neurophysiology 50, 1380–1392.

    PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B, Cafarelli E & and Völlestad NK (1986). Fatigue of submaximal static contractions. Acta Physiologica Scandinavica Supplement 556, 137–148.

    CAS  Google Scholar 

  • Bigland-Ritchie B, Fuglevand AJ & Macefield VG (1993). Force modulation by rate-coding in single motor units of human toe extensor muscles. Society for Neuroscience Abstract 19, 154.

    Google Scholar 

  • Botterman BR & Cope TC (1988). Motor-unit stimulation patterns during fatiguing contractions of constant tension. Journal of Neurophysiology 60, 1198–1214.

    PubMed  CAS  Google Scholar 

  • Botterman BR, Iwamoto GA & Gonyea WJ (1986). Gradation of isometric tension by different activation rates on motor units of cat flexor carpi radialis muscle. Journal of Neurophysiology 56, 494–506.

    PubMed  CAS  Google Scholar 

  • Buchthal F & Schmalbruch H (1970). Contraction times and fibre types in intact human muscle. Acta Physiologica Scandinavica 79, 435–452.

    Article  PubMed  CAS  Google Scholar 

  • Burke RE, Levine DN, Tsairis P & Zajac FE (1973). Physiological types and histochemical profiles in motor units of the cat gastrocnemius. Journal of Physiology (London) 234, 723–748.

    CAS  Google Scholar 

  • Burke RE, Rudomin P & Zajac FE (1976). The effect of activation history on tension production by individual motor units. Brain Research 109, 515–529.

    Article  PubMed  CAS  Google Scholar 

  • Calancie B & Bawa P (1985). Voluntary and reflexive recruitment of flexor carpi radialis motor units in humans. Journal of Neurophysiology 53, 1194–1200.

    PubMed  CAS  Google Scholar 

  • Calancie B & Bawa P (1986). Limitations of the spike-triggered averaging technique. Muscle & Nerve 9, 78–83.

    Article  CAS  Google Scholar 

  • Cooper S & Eccles JC (1930). The isometric response of mammalian muscles. Journal of Physiology (London) 69, 377–385.

    CAS  Google Scholar 

  • Datta AK & Stephens JA (1980). Short-term synchronization of motor unit firing in human first dorsal interosseous. Journal of Physiology (London) 308, 19–20P.

    Google Scholar 

  • Datta AK & Stephens JA (1981). The effects of digital nerve stimulation on the firing of motor units in human first dorsal interosseous muscle. Journal of Physiology (London) 318, 501–510.

    CAS  Google Scholar 

  • Dengler R, Konstanzer A, Küther G, Hesse S, Wolf W, & Struppler A (1990). Amyotrophic lateral sclerosis: macro-EMG and twitch forces of single motor units. Muscle & Nerve 13, 545–550.

    Article  CAS  Google Scholar 

  • Dengler R, Stein RB, & Thomas CK (1988). Axonal conduction velocity and force of single human motor units. Muscle & Nerve 11, 136–145.

    Article  CAS  Google Scholar 

  • Desmedt JE & Godaux E (1977a). Fast motor units are not preferentially activated in rapid voluntary contractions in man. Nature 267, 717–719.

    Article  PubMed  CAS  Google Scholar 

  • Desmedt JE & Godaux E (1977b). Ballistic contractions in man: characteristic recruitment patterns of single motor units of the tibialis anterior muscle. Journal of Physiology (London) 264, 673–693.

    CAS  Google Scholar 

  • Desmedt JE & Godaux E (1981). Spinal motoneuron recruitment in man: rank deordering with direction but not with speed of voluntary movement. Science 214, 933–936.

    Article  Google Scholar 

  • Doherty TJ & Brown WF (1994). A method for the longitudinal study of human thenar motor units. Muscle and Nerve 17, 1029–1036.

    Article  PubMed  CAS  Google Scholar 

  • Dubose L, Schelhorn TB & Clamann HP (1987). Changes in contractile speed of cat motor units during activity. Muscle & Nerve 10, 744–752.

    Article  CAS  Google Scholar 

  • Duchateau J & Hainaut K (1990). Effects of immobilization on contractile properties, recruitment and firing rates of human motor units. Journal of Physiology (London) 422, 55–65.

    CAS  Google Scholar 

  • Freund H-J, Büdingen H-J & Dietz V (1975). Activity of single motor units from human forearm muscles during voluntary isometric contractions. Journal of Neurophysiology 38, 933–946.

    PubMed  CAS  Google Scholar 

  • Fuglevand AJ, Macefield VG & Bigland-Ritchie B (1993). Twitch properties of human toe extensor motor units. Society for Neuroscience Abstract 19, 154.

    Google Scholar 

  • Gandevia SC & McKenzie DK (1988). Activation of human muscles at short muscle lengths during maximal static efforts. Journal of Physiology (London) 407, 599–613.

    CAS  Google Scholar 

  • Garnett RAF, O’Donovan MJ, Stephens JA & Taylor A (1979). Motor unit organisation of human medial gastrocnemius. Journal of Physiology (London) 287, 33–43.

    CAS  Google Scholar 

  • Goldberg LJ & Derfler B (1977). Relationship among recruitment order, spike amplitude, and twitch tension of single motor units in human masseter muscle. Journal of Neurophysiology 40, 879–890.

    PubMed  CAS  Google Scholar 

  • Grimby L & Hannerz J (1974). Differences in recruitment order and discharge pattern of motor units in the early and late flexion reflex components in man. Acta Physiologica Scandinavica 90, 555–564.

    Article  PubMed  CAS  Google Scholar 

  • Gydikov A, Dimitrov G, Kosarov D & Dimitrova N (1976). Functional differentiation of motor units in human opponens pollicis muscle. Experimental Neurology 50, 36–47.

    Article  PubMed  CAS  Google Scholar 

  • Hannerz J & Grimby L (1979). The afferent influence on the voluntary firing range of individual motor units in man. Muscle & Nerve 2, 414–422.

    Article  CAS  Google Scholar 

  • Henneman E, Somjen G & Carpenter DO (1965). Functional significance of cell size in spinal motoneurons. Journal of Neurophysiology 28, 560–580.

    PubMed  CAS  Google Scholar 

  • Howell JN, Fuglevand AJ, Walsh ML & Bigland-Ritchie B (1994). Motor unit firing during shortening and lengthening contractions. Society for Neuroscience Abstract 20, 1759.

    Google Scholar 

  • Johansson RS, Thomas CK, Westling G & Bigland-Ritchie B (1988a). Anew method for examining contractile properties of human single motor units. European Journal of Physiology 411, SI R196.

    Google Scholar 

  • Johansson RS & Westling G (1988). Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Experimental Brain Research 71, 59–71.

    CAS  Google Scholar 

  • Johansson RS, Westling G, Thomas CK & Bigland-Ritchie B (1988b). Recording human single motor unit properties: a new method. Society for Neuroscience Abstract 14, 1232.

    Google Scholar 

  • Kernell D, Ducati A & Sjöholm H (1975). Properties of motor units in the first deep lumbrical muscle of the cat’s foot. Brain Research 98, 37–55.

    Article  PubMed  CAS  Google Scholar 

  • Kernell D, Eerbeek O & Verhey BA (1983). Relation between isometric force and stimulation rate in cat’s hindlimb motor units of different twitch contraction time. Experimental Brain Research 50, 220–227.

    CAS  Google Scholar 

  • Kukulka CG & Clamann HP (1981). Comparison of the recruitment and discharge properties of motor units in human brachial biceps and adductor pollicis during isometric contractions. Brain Research 219, 45–55.

    Article  PubMed  CAS  Google Scholar 

  • Lim KY, Thomas CK & Rymer WZ (1995). Computational methods for improving estimates of motor unit twitch contraction properties. Muscle & Nerve 18, 165–174.

    Article  CAS  Google Scholar 

  • Marsh E, Sale D, McComas AJ & Quinlan J (1981). Influence of joint position on ankle dorsiflexion in humans. Journal of Applied Physiology 51, 160–167.

    PubMed  CAS  Google Scholar 

  • McKeon B & Burke D (1983). Muscle spindle discharge in response to contraction of single motor units. Journal of Neurophysiology 49, 291–302.

    PubMed  CAS  Google Scholar 

  • Mendell LM & Henneman E (1968). Terminals of single Ia fibers: Distribution within a pool of 300 homonymous motor neurons. Science 160, 96–98.

    Article  PubMed  CAS  Google Scholar 

  • Milner-Brown HS, Stein RB & Lee RG (1974). Pattern of recruiting human motor units in neuropathies and motor neurone disease. Journal of Neurology, Neurosurgery & Psychiatry 37, 665–669.

    Article  CAS  Google Scholar 

  • Milner-Brown HS, Stein RB & Yemm R (1973a). The contractile properties of human motor units during voluntary isometric contractions. Journal of Physiology (London) 228, 285–306.

    CAS  Google Scholar 

  • Milner-Brown HS, Stein RB & Yemm R (1973b). The orderly recruitment of human motor units during voluntary isometric contractions. Journal of Physiology (London) 230, 359–370.

    CAS  Google Scholar 

  • Monster AW & Chan H (1977). Isometric force production by motor units in the extensor digitorum communis muscle in man. Journal of Neurophysiology 40, 1432–1443.

    PubMed  CAS  Google Scholar 

  • Nardone A, Romano C & Schieppati M (1989). Selective recruitment of high-threshold human motor units during voluntary isotonic lengthening of active muscles. Journal of Physiology (London) 409, 451–471.

    CAS  Google Scholar 

  • Nardone A & Schieppati M (1988). Shift of activity from slow to fast muscle during voluntary lengthening contractions of the triceps surae muscle in humans. Journal of Physiology (London) 395, 363–381.

    CAS  Google Scholar 

  • Nordstrom MA & Miles TS (1990). Fatigue of single motor units in human masseter. Journal of Applied Physiology 68, 26–34.

    PubMed  CAS  Google Scholar 

  • Nordstrom MA, Miles TS & Veale JL (1989). Effect of motor unit firing pattern on twitches obtained by spike-triggered averaging. Muscle & Nerve 12, 556–567.

    Article  CAS  Google Scholar 

  • Olson CB & Swett CP (1971). Effect of prior activity on properties of different types of motor units. Journal of Neurophysiology 34, 1–16.

    PubMed  CAS  Google Scholar 

  • Person RS (1974). Rhythmic activity of a group of human motoneurons during voluntary contraction of a muscle. Electroencephalography 36, 585–595.

    Article  CAS  Google Scholar 

  • Sica REP & McComas AJ (1971). Fast and slow twitch units in a human muscle. Journal of Neurology, Neurosurgery & Psychiatry 34, 113–120.

    Article  CAS  Google Scholar 

  • Smith A, Zimmerman GN & Abbas PJ (1981). Recruitment patterns of motor units in speech production. Journal of Speech and Hearing Research 24, 567–576.

    PubMed  CAS  Google Scholar 

  • Stein RB, Brucker BS & Ayyar DR (1990). Motor units in incomplete spinal cord injury: electrical activity, contractile properties and the effects of biofeedback. Journal of Neurology, Neurosurgery & Psychiatry 53, 880–885.

    Article  CAS  Google Scholar 

  • Stein RB, French AS, Mannard D & Yemm R (1972). New methods for analyzing motor function in man and animals. Brain Research 40, 187–192.

    Article  PubMed  CAS  Google Scholar 

  • Stephens JA Garnett R & Buller NP (1978). Reversal of recruitment order of single motor units produced by cutaneous stimulation during voluntary muscle contraction in man. Nature 272, 362–364.

    Article  PubMed  CAS  Google Scholar 

  • Stephens JA & Usherwood TP (1977). The mechanical properties of human motor units with special reference to their fatiguability and recruitment threshold. Brain Research 125, 91–97.

    Article  PubMed  CAS  Google Scholar 

  • Taylor A & Stephens JA (1976). Study of human motor unit contractions by controlled intramuscular microstimulation. Brain Research 117, 331–335.

    Article  PubMed  CAS  Google Scholar 

  • Ter Haar Romeny BM, Denier van der Gon JJ & Gielen CAM (1982). Changes in recruitment order of motor units in the human biceps muscle. Experimental Neurology 78, 360–368.

    Article  PubMed  CAS  Google Scholar 

  • Thomas CK, Bigland-Ritchie B & Johansson RS (1991a). Force-frequency relationships of human thenar motor units. Journal of Neurophysiology 65, 1509–1516.

    PubMed  CAS  Google Scholar 

  • Thomas CK, Bigland-Ritchie B, Westling G & Johansson RS (1990a). A comparison of human thenar motor unit properties studied by intraneural motor axon stimulation and spike-triggered averaging. Journal of Neurophysiology 64, 1347–1351.

    PubMed  CAS  Google Scholar 

  • Thomas CK, Johansson RS & Bigland-Ritchie B (1991b). Attempts to physiologically classify human thenar motor units. Journal of Neurophysiology 65, 1501–1508.

    PubMed  CAS  Google Scholar 

  • Thomas CK, Johansson RS, Westling G & Bigland-Ritchie B (1990b). Twitch properties of human thenar motor units measured in response to intraneural motor axon stimulation. Journal of Neurophysiology 64, 1339–1346.

    PubMed  CAS  Google Scholar 

  • Thomas CK, Pocock ME & Evans JJ (1994). Fatigue and post-fatigue responses to sustained MVCs after chronic cervical spinal cord injury. Neural and Neuromuscular Aspects of Muscle Fatigue Abstracts B20, 39.

    Google Scholar 

  • Thomas CK, Ross BH & Calancie B (1987a). Human motor-unit recruitment during isometric contractions and repeated dynamic movements. Journal of Neurophysiology 57, 311–324.

    PubMed  CAS  Google Scholar 

  • Thomas CK, Ross BH & Stein RB (1986). Motor-unit recruitment in human first dorsal interosseous muscle for static contractions in three different directions. Journal of Neurophysiology 55, 1017–1029.

    PubMed  CAS  Google Scholar 

  • Thomas CK, Stein RB, Gordon T, Lee RG & Elleker MG (1987b). Patterns of reinnervation and motor unit recruitment in human hand muscles after complete ulnar and median nerve section and resuture. Journal of Neurology, Neurosurgery & Psychiatry 50, 259–268.

    Article  CAS  Google Scholar 

  • Thomas JS, Schmidt EM & Hambrecht FT (1978). Facility of motor unit control during tasks defined directly in terms of unit behaviors. Experimental Neurology 59, 384–395.

    Article  PubMed  CAS  Google Scholar 

  • Vallbo, AB (1970). Discharge patterns in human muscle spindle afferents during isometric voluntary contractions. Acta Physiologica Scandinavica 78, 315–333.

    Article  PubMed  CAS  Google Scholar 

  • Westling G, Johansson RS, Thomas CK & Bigland-Ritchie B. (1990). Measurement of contractile and electrical properties of single human motor units in response to intraneural motor axon stimulation. Journal of Neurophysiology 64, 1331–1338.

    PubMed  CAS  Google Scholar 

  • Yemm R (1977). The orderly recruitment of motor units of the masseter and temporal muscles during voluntary isometric contraction in man. Journal of Physiology (London) 265, 163–174.

    CAS  Google Scholar 

  • Young JL & Mayer RF (1981). Physiological properties and classification of single motor units activated by intramuscular microstimulation in the first dorsal interosseous muscle in man. In: Desmedt JE (ed.), Motor Unit Types, Recruitment and Plasticity in Health and Disease. Progress in Clinical Neurophysiology 9, pp. 17–25. Basel: Karger.

    Google Scholar 

  • Yue G, Fuglevand AJ, Nordstrom MA & Enoka RM (1995). Limitations of the surface-EMG technique for estimating motor unit synchronization. Biological Cybernetics In press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thomas, C.K. (1995). Human Motor Units Studied by Spike-Triggered Averaging and Intraneural Motor Axon Stimulation. In: Gandevia, S.C., Enoka, R.M., McComas, A.J., Stuart, D.G., Thomas, C.K., Pierce, P.A. (eds) Fatigue. Advances in Experimental Medicine and Biology, vol 384. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1016-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1016-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1018-9

  • Online ISBN: 978-1-4899-1016-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics