Skip to main content

Intrinsic Properties of Motoneurons

Implications for Muscle Fatigue

  • Chapter
Fatigue

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 384))

Abstract

The following is a brief review of the intrinsic properties of motoneurons that contribute to their recruitment and rate modulation. Our emphasis is on properties that may either accelerate or delay the onset of muscular fatigue. In general, intrinsic motoneuron properties are regulated in a way that minimizes energy expenditure. The correlation of recruitment threshold with motoneuron type ensures that the most fatigable motor units are reserved for the most forceful contractions. The variation in minimum firing rates arising from variations in AHP characteristics ensures that motoneurons begin to fire at rates that are matched to the force producing characteristics of their muscle units. Further, it is possible that spike-frequency adaptation contributes to optimization of the tension (force)-firing frequency (T-f) transform of individual motor units.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams PR, Jones SW, Pennefather P, Brown DA, Koch C & Lancaster B (1986). Slow synaptic transmission in frog sympathetic ganglia. Journal of Experimental Biology 124, 259–285.

    PubMed  CAS  Google Scholar 

  • Baldissera F, Gustafsson B & Parmiggiani F (1978). Saturating summation of the afterhyperpolarization conductance in spinal motoneurones: a mechanism for’ secondary range’ repetitive firing. Brain Research 146, 69–82.

    Article  PubMed  CAS  Google Scholar 

  • Barrett EF, Barrett JN & Crill WE (1980). Voltage sensitive outward currents in cat motoneurons. Journal of Physiology (London) 304, 251–276.

    CAS  Google Scholar 

  • Bigland-Ritchie B, Dawson NJ, Johansson RS & Lippold OC (1986). Reflex origin for the slowing of motoneurone firing rates in fatigue of human voluntary contractions. Journal of Physiology (London) 379, 451–459.

    CAS  Google Scholar 

  • Bigland-Ritchie B, Johansson R, Lippold OC, Smith S & Woods JJ (1983a). Changes in motoneurone firing rates during sustained maximal voluntary contractions. Journal of Physiology (London) 340, 335–346.

    CAS  Google Scholar 

  • Bigland-Ritchie B, Johansson R, Lippold OC & Woods JJ (1983b). Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions. Journal of Neurophysiology 50, 313–24.

    PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B & Woods JJ (1984). Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle & Nerve 7, 691–699.

    Article  CAS  Google Scholar 

  • Binder MD, Heckman CJ & Powers RK (1995). The physiological control of motoneuron activity. In: Rowell LF, Shepherd JT (eds.), Smith JL (sec. ed.), Handbook of Physiology: Integration of Motor, Respira-tory and Metabolic Control During Exercise, sec. A, Neural Control of Movement, pp. 00-00. Bethesda: American Physiological Society. In press

    Google Scholar 

  • Botterman BR & Cope TC (1988). Motor-unit stimulation patterns during fatiguing contractions of constant tension. Journal of Neurophysiology 60, 1198–1214.

    PubMed  CAS  Google Scholar 

  • Brismar T (1977). Slow mechanism for sodium permeability inactivation in myelinated nerve fibre of Xenopus laevis. Journal of Physiology (London) 270, 283–297.

    CAS  Google Scholar 

  • Brownstone RM, Jordan LM, Kriellaars DJ, Noga BR & Shefchyk SJ (1992). On the regulation of repetitive firing in lumbar motoneurones during fictive locomotion in the cat. Experimental Brain Research 90, 441–55.

    Article  CAS  Google Scholar 

  • Burke RE (1981). Motor units: anatomy, physiology, and functional organization. In: Brookhart JM, Mountcastle VB (eds.), Brooks VB (vol. ed.), Handbook of Physiology, sec. 1, vol. II, pt I, The Nervous System: Motor Control., pp. 345–422. Bethesda, MD: American Physiological Society.

    Google Scholar 

  • Burke RE, Dum RP, Fleshman JW, Glenn LL, Lev-Tov A, O’Donovon MJ & Pinter MJ (1982). An HRP study of the relation between cell size and motor unit type in cat ankle extensor motoneurons. Journal of Comparative Neurology 209, 17–28.

    Article  PubMed  CAS  Google Scholar 

  • Burke RE & Nelson PG (1971). Accommodation to current ramps in motoneurons of fast and slow twitch motor units. International Journal of Neuroscience 1, 347–356.

    Article  PubMed  CAS  Google Scholar 

  • Burke RE, Rudomin P & Zajac FE (1970). Catch property in single mammalian motor units. Science 168, 122–124.

    Article  PubMed  CAS  Google Scholar 

  • Calvin WH (1974). Three modes of repetitive firing and the role of threshold time course between spikes. Brain Research 59, 341–346.

    Article  Google Scholar 

  • Carp JS (1992). Physiological properties of primate lumbar motoneurons. Journal of Neurophysiology 68, 1121–1132.

    PubMed  CAS  Google Scholar 

  • Chandler SH, Hsaio C, Inoue T & Goldberg LJ (1994). Electrophysiological properties of guinea pig trigeminal motoneurons recorded in vitro. Journal of Neurophysiology 71, 129–145.

    PubMed  CAS  Google Scholar 

  • Enoka RM & Stuart DG (1992). Neurobiology of muscle fatigue. Journal of Applied Physiology 72, 1631–1648.

    Article  PubMed  CAS  Google Scholar 

  • Fleshman JW, Munson JB, Sypert GW & Friedman WA (1981). Rheobase, input resistance, and motor-unit type in medial gastrocnemius motoneurons in the cat. Journal of Neurophysiology 46, 1326–1338.

    PubMed  CAS  Google Scholar 

  • Frankenhaeuser B & Vallbo AB (1964). Accomodation in myelinated nerve fibres of Xenopus laevis as computed on the basis of voltage clamp data. Acta Physiologica Scandinavica 63, 1–20.

    Article  Google Scholar 

  • French AS (1989). Ouabain selectively affects the slow component of sensory adaptation in an insect mechanoreceptor. Brain Research 504, 112–114.

    Article  PubMed  CAS  Google Scholar 

  • Garland SJ, Garner SH & McComas AJ (1988). Reduced voluntary electromyographic activity after fatiguing stimulation of human muscle. Journal of Physiology (London) 401, 547–556.

    CAS  Google Scholar 

  • Granit R, Kernell D & Shortess GK (1963). Quantitative aspects of repetitive firing of mammalian motoneurones, caused by injected currents. Journal of Physiology (London) 168, 911–931.

    CAS  Google Scholar 

  • Gustafsson B & Pinter MJ (1984a). An investigation of threshold properties among cat spinal alpha-motoneurones. Journal of Physiology (London) 357, 453–83.

    CAS  Google Scholar 

  • Gustafsson B & Pinter MJ (1984b). Relations among passive electrical properties of lumbar alpha-motoneurones of the cat. Journal of Physiology (London) 356, 401–31.

    CAS  Google Scholar 

  • Heckman CJ & Binder MD (1990). Neural mechanisms underlying the orderly recruitment of motoneurons. In: Binder MD, Mendell LM (eds.), The Segmental Motor System, pp. 182–204. New York: Oxford University Press.

    Google Scholar 

  • Henneman E & Mendell LM (1981). Functional organization of motoneuron pool and its inputs. In: Brookhart JM, Mountcastle VB (sec. eds.), Brooks VB (vol. ed.), Handbook of Physiology, sec. 1, vol. II, pt 1, The Nervous System: Motor Control, pp. 423-507. Bethesda, MD: American Physiological Society.

    Google Scholar 

  • Henneman E & Olson CB (1965). Relations between structure and function in the design of skeletal muscle. Journal of Neurophysiology 28, 581–598.

    PubMed  CAS  Google Scholar 

  • Henneman E, Somjen G & Carpenter DO (1965). Excitability and inhibitability of motoneurons of different sizes. Journal of Neurophysiology 28, 599–620.

    PubMed  CAS  Google Scholar 

  • Hille B (1992). Ionic Channels of Excitable Membranes (2nd Ed.). Sunderland, MA: Sinauer Assoc. Inc.

    Google Scholar 

  • Hoffer JA, O’Donovan MJ, Pratt CA & Loeb GE (1981). Discharge patterns of hindlimb motoneurons during normal cat locomotion. Science 213, 466–7.

    Article  PubMed  CAS  Google Scholar 

  • Hounsgaard J, Hultborn H, Jespersen B & Kiehn O (1984). Intrinsic membrane properties causing a bistable behaviour of alpha-motoneurones. Experimental Brain Research 55, 391–394.

    Article  CAS  Google Scholar 

  • Hounsgaard J & Kiehn O (1989). Serotonin-induced bistability of turtle motoneurones caused by a nifedipine-sensitive calcium plateau potential. Journal of Physiology (London) 414, 265–282.

    CAS  Google Scholar 

  • Hounsgaard J, Kiehn O & Mintz I (1988). Response properties of motoneurones in a slice preparation of the turtle spinal cord. Journal of Physiology (London) 398, 575–89.

    CAS  Google Scholar 

  • Howe JR & Ritchie JM (1992). Multiple kinetic components of sodium channel inactivation in rabbit Schwann cells. Journal of Physiology (London) 455, 529–566.

    CAS  Google Scholar 

  • Jack JJB, Noble D & Tsien RW (1975). Electric Current Flow in Excitable Cells. Oxford: Clarendon Press.

    Google Scholar 

  • Jodkowski JS, Viana F, Dick TE & Berger AJ (1988). Repetitive firing properties of phrenic motoneurons in the cat. Journal of Neurophysiology 60, 687–702.

    PubMed  CAS  Google Scholar 

  • Kerneil D (1965a). The adaptation and the relation between discharge frequency and current strength of cat lumbosacral motoneurones stimulated by long-lasting injected currents. Acta Physiologica Scandinavica 65, 65–73.

    Article  Google Scholar 

  • Kernell D (1965b). High frequency repetitive firing of cat lumbosacral motoneurones stimulated by long-lasting injected currents. Acta Physiologica Scandinavica 65, 74–86.

    Article  Google Scholar 

  • Kernell D (1965c). The limits of firing frequency in cat lumbosacral motoneurones possessing different time course of afterhyperpolarization. Acta Physiologica Scandinavica 65, 87–100.

    Article  Google Scholar 

  • Kernell D (1979). Rhythmic properties of motoneurones innervating muscle fibres of different speed in m. gastrocnemius medialis of the cat. Brain Research 160, 159–62.

    Article  PubMed  CAS  Google Scholar 

  • Kernell D (1983). Functional properties of spinal motoneurons and gradation of muscle force. In: Desmedt JE (ed.), Motor Control Mechanisms in Health and Disease, pp. 213–226. New York: Raven Press.

    Google Scholar 

  • Kernell D & Monster AW (1981). Threshold current for repetitive impulse firing in motoneurones innervating muscle fibres of different fatigue sensitivity in the cat. Brain Research 229, 193–196.

    Article  PubMed  CAS  Google Scholar 

  • Kernell D & Monster AW (1982a). Time course and properties of late adaptation in spinal motoneurones of the cat. Experimental Brain Research 46, 191–196.

    CAS  Google Scholar 

  • Kernell D & Monster AW (1982b). Motoneurone properties and motor fatigue. An intracellular study of gastrocnemius motoneurones of the cat. Experimental Brain Research 46, 197–204.

    CAS  Google Scholar 

  • Kernell D & Sjoholm H (1973). Repetitive impulse firing: comparisons between neurone models based on ‘voltage clamp equations’ and spinal motoneurones. Acta Physiologica Scandinavica 87, 40–56.

    Article  PubMed  CAS  Google Scholar 

  • Krnjevic K, Lamour Y, MacDonald JF & Nistri A (1979). Effects of some divalent cations on motoneurones in cats. Canadian Journal of Physiology and Pharmacology 57, 944–56.

    Article  PubMed  CAS  Google Scholar 

  • Lindsay A, Heckman CJ & Binder MD (1986). Analysis of late adaptation in cat motoneurons. Society for Neuroscience Abstracts 12, 247.

    Google Scholar 

  • Macefield G, Hagbarth KE, Gorman R, Gandevia SC & Burke D (1991). Decline in Spindle Support to alpha-Motoneurones During Sustained Voluntary Contractions. Journal of Physiology (London) 440, 497–512.

    CAS  Google Scholar 

  • Marrion NV (1993). Selective reduction of one mode M-channel gating by muscarine in sympathetic neurons. Neuron 11, 77–84.

    Article  PubMed  CAS  Google Scholar 

  • Marsden CD, Meadows JC & Merton PA (1983). ‘Muscular Wisdom’ that minimizes fatigue during prolonged effort in man: Peak rates of motoneuron discharge and slowing of discharge during fatigue. In: Desmedt JE (eds.), Motor Control Mechanisms in Health and Disease, pp. 169–211. New York: Raven Press.

    Google Scholar 

  • Mosfeldt-Laursen A & Rekling JC (1989). Electrophysiological properties of hypoglossal motoneurons of guinea-pigs studied in vitro. Neuroscience 30, 619–637.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura Y, Schwindt PC & Crill WE (1989). Electrical properties of facial motoneurons in brainstem slices from guinea pig. Brain Research 502, 127–142.

    Article  PubMed  CAS  Google Scholar 

  • Powers RK (1993). A variable-threshold motoneuron model that incorporates time-dependent and voltage-dependent potassium and calcium conductances. Journal of Neurophysiology 70, 246–262.

    PubMed  CAS  Google Scholar 

  • Powers RK & Binder MD (1985). Distribution of oligosynaptic group I input to the cat medial gastrocnemius motoneuron pool. Journal of Neurophysiology 53, 497–517.

    PubMed  CAS  Google Scholar 

  • Rekling JC (1992). Interaction between thyrotropin-releasing hormone (TRH) and NMDA-receptor-mediated responses in hypoglossal motoneurones. Brain Research 578, 289–96.

    Article  PubMed  CAS  Google Scholar 

  • Richter DW, Schlue WR, Mauritz KH & Nacimiento AC (1974). Comparison of membrane properties of the cell body and the initial part of the axon of phasic motoneurones in the spinal cord of the cat. Experimental Brain Research 21, 193–206.

    Google Scholar 

  • Sah P (1992). Role of calcium influx and buffering in the kinetics of Ca(2+)-activated K+ current in rat vagal motoneurons. Journal of Neurophysiology 68, 2237–2247.

    PubMed  CAS  Google Scholar 

  • Sah P & McLachlan EM (1991). Ca2+-activated K+ currents underlying the afterhyperpolarization in guinea pig vagal neurons: a role for Ca2+-activated Ca2+ release. Neuron 7, 257–264.

    Article  PubMed  CAS  Google Scholar 

  • Sawczuk A (1993) Adaptation in Sustained Motoneuron Discharge. PhD Dissertation, Seattle: University of Washington.

    Google Scholar 

  • Sawczuk A & Binder MD (1992). Reduction of Na+-K+ activity does not reduce the late adaptation of motoneuron discharge. Society for Neuroscience Abstracts 18, 512.

    Google Scholar 

  • Sawczuk A & Binder MD (1993). Reduction of the AHP with Mn++ decreases the initial adaptation, but increases the late adaptation in rat hypoglossal motoneuron discharge. The Physiologist 36, A23.

    Google Scholar 

  • Sawczuk A, Powers RK & Binder MD (1995). Spike-frequency adaptation studied in hypoglossal motoneurons of the rat. Journal of Neurophysiology 73, In press

    Google Scholar 

  • Schlue WR, Richter DW, Mauritz KH & Nacimiento AC (1974). Mechanisms of accommodation to linearly rising currents in cat spinal motoneurones. Journal of Neurophysiology 37, 310–315.

    PubMed  CAS  Google Scholar 

  • Schwindt P & Crill WE (1977). A persistent negative resistance in cat lumbar motoneurons. Brain Research 120, 173–178.

    Article  PubMed  CAS  Google Scholar 

  • Schwindt PC (1973). Membrane-potential trajectories underlying motoneuron rhythmic firing at high rates. Journal of Neurophysiology 36, 434–439.

    PubMed  CAS  Google Scholar 

  • Schwindt PC & Crill WE (1980a). Effects of barium on cat spinal motoneurons studied by voltage clamp. Journal of Neurophysiology 44, 827–846.

    PubMed  CAS  Google Scholar 

  • Schwindt PC & Crill WE (1980b). Properties of a persistent inward current in normal and TEA-injected motoneurons. Journal of Neurophysiology 43, 1700–1724.

    PubMed  CAS  Google Scholar 

  • Schwindt PC & Crill WE (1980c). Role of a persistent inward current in motoneuron bursting during spinal seizures. Journal of Neurophysiology 43, 1296–1318.

    PubMed  CAS  Google Scholar 

  • Schwindt PC & Crill WE (1982). Factors influencing motoneuron rhythmic firing: results from a voltage-clamp study. Journal of Neurophysiology 48, 875–90.

    PubMed  CAS  Google Scholar 

  • Schwindt PC & Crill WE (1984). Membrane Properties of Cat Spinal Motoneurons. In: Davidoff RA (ed.), Handbook of the Spinal Cord, pp. 199–242. New York: Marcel Dekker.

    Google Scholar 

  • Schwindt PC, Spain WJ & Crill WE (1989). Long-lasting reduction of excitability by a sodium-dependent potassium current in cat neocortical neurons. Journal of Neurophysiology 61, 233–44.

    PubMed  CAS  Google Scholar 

  • Sokolove PG & Cooke IM (1971). Inhibition of impulse activity in a sensory neuron by an electrogenic pump. Journal of General Physiology 57, 125–163.

    Article  PubMed  CAS  Google Scholar 

  • Spain WJ, Schwindt PC & Crill WE (1991). Post-inhibitory excitation and inhibition in layer V pyramidal neurones from cat sensorimotor cortex. Journal of Physiology (London) 434, 609–626.

    CAS  Google Scholar 

  • Spielmann JM, Laouris Y, Nordstrom MA, Robinson GA, Reinking RM & Stuart DG (1993). Adaptation of cat motoneurons to sustained and intermittent extracellular activation. Journal of Physiology (Lon-don) 464,75–120.

    CAS  Google Scholar 

  • Stuart DG & Callister RJ (1993). Afferent and spinal reflex aspects of muscle fatigue: Issues and speculations. In: Sargeant AJ, D. Kernell (eds.), Neuromuscular Fatigue, pp. 169–180. Amsterdam: Royal Netherlands Academy of Sciences.

    Google Scholar 

  • Vallbo AB (1964). Accommodation related to the inactivation of the sodium permeability in single myelinated nerve fibres from Xenopus laevis. Acta Physiologyica Scandinavica 61, 429–444.

    CAS  Google Scholar 

  • Viana F, Bayliss DA & Berger AJ (1993). Calcium conductances and their role in the firing behavior of neonatal rat hypoglossal motoneurons. Journal of Neurophysiology 69, 2137–2149.

    PubMed  CAS  Google Scholar 

  • Woods JJ, Furbush F & Bigland-Ritchie B (1987). Evidence for a fatigue-induced reflex inhibition of motoneuron firing rates. Journal of Neurophysiology 58, 125–137.

    PubMed  CAS  Google Scholar 

  • Zajac FE & Young JL (1980). Properties of stimulus trains producing maximum tension-time area per pulse from single motor units in medial gastrocnemius muscle of the cat. Journal of Neurophysiology 43, 1206–1220.

    PubMed  CAS  Google Scholar 

  • Zengel JE, Reid SA, Sypert GW & Munson JB (1985). Membrane electrical properties and prediction of motor-unit type of medial gastrocnemius motoneurons in the cat. Journal of Neurophysiology 53, 1323–1344.

    PubMed  CAS  Google Scholar 

  • Zhang L (1990). Effects of inositol, 1,4,5-trisphosphate injections into cat spinal motoneurons. Canadian Journal of Physiology and Pharmacology 68, 1062–1068.

    Article  PubMed  CAS  Google Scholar 

  • Zhang L & Krnjevic K (1987). Effects of intracellular injections of phorbol ester and protein kinase C on cat spinal motoneurons in vivo. Neuroscience Letters 77, 287–292.

    Article  PubMed  CAS  Google Scholar 

  • Zwaagstra B & Kernell D (1980). The duration of after-hyperpolarization in hindlimb alpha motoneurones of different sizes in the cat. Neuroscience Lettters 19, 303–307.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sawczuk, A., Powers, R.K., Binder, M.D. (1995). Intrinsic Properties of Motoneurons. In: Gandevia, S.C., Enoka, R.M., McComas, A.J., Stuart, D.G., Thomas, C.K., Pierce, P.A. (eds) Fatigue. Advances in Experimental Medicine and Biology, vol 384. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1016-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1016-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1018-9

  • Online ISBN: 978-1-4899-1016-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics