Visual Form Representation

  • Gabriella Sanniti di Baja

Abstract

Schemes to compact spatial data into representations that facilitate the computation of geometrical properties and favor shape description are discussed in this paper. Any region, resulting after image segmentation, can be basically represented in terms of its external characteristics (the contour of the region), or of its internal characteristics (the pixels constituting the region). Hierarchical data structures, based on the principle of recursive decomposition, as well as approximate representations are also discussed.

Keywords

Black Pixel Approximate Representation White Pixel Hierarchical Representation Polygonal Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Rosenfeld and A.C. Kak, Digital Picture Processing, Academic Press, New York, NY (1982).Google Scholar
  2. 2.
    R.C. Gonzalez and P. Wintz, Digital Image Processing, Addison-Wesley, Reading, MA (1987).Google Scholar
  3. 3.
    B.G. Batchelor, D.A. Hill, and D.C. Hodgson eds., Automated Visual Inspection, IFS North-Holland, Bedford, NL (1985).Google Scholar
  4. 4.
    H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley, Reading, MA (1989).Google Scholar
  5. 5.
    G. Borgefors, Distance transformations in arbitrary dimensions, Comput. Vision Graphics Image Process., Vol.27, pp. 321–345 (1984).CrossRefGoogle Scholar
  6. 6.
    G. Borgefors, Distance transformations in digital images, Comput. Vision Graphics Image Process., Vol.34, pp. 344–371 (1986).CrossRefGoogle Scholar
  7. 7.
    H. Freeman, Computer processing of line drawings, Comput. Surveys, Vol.6, pp. 57–97 (1974).CrossRefGoogle Scholar
  8. 8.
    T. Pavlidis, Structural pattern recognition, Springer Verlag, New York, NY (1977).Google Scholar
  9. 9.
    G. Gallus and P. W. Neurath, Improved computer chromosome analysis incorporating preprocessing and boundary analysis, Phys. Med. Biol, Vol.15, p. 435 (1970).PubMedCrossRefGoogle Scholar
  10. 10.
    H. Freeman, On the encoding of arbitrary geometric configurations, IRE Trans. Electronic Computers, Vol.10, pp. 260–268 (1961).CrossRefGoogle Scholar
  11. 11.
    C.H. Teh and R.T. Chin, On the detection of dominant points on digital curves, IEEE Trans. Patt. Anal. Mach. Intell., Vol.11, p. 859 (1989).CrossRefGoogle Scholar
  12. 12.
    C. Arcelli and G. Ramella, Finding contour-based abstractions of planar patterns, Pattern Recognition, Vol.26, No.10, pp. 1563–1577 (1993).CrossRefGoogle Scholar
  13. 13.
    I. Ragnemalm and G. Borgefors, Towards a minimal shape representation using maximal disks, in The Euclidean Distance Transform, I. Ragnemalm, Dissertation No.304, Linköping University, S, p. 245 (1993).Google Scholar
  14. 14.
    A. Rosenfeld and J.L. Pfaltz, Distance functions on digital pictures, Pattern Recognition, Vol.1, No.1, pp. 33–61 (1968).CrossRefGoogle Scholar
  15. 15.
    C. Arcelli and G. Sanniti di Baja, Weighted distance transforms: a caracterization, in Image Analysis and Processing II, V. Cantoni et al. eds., Plenum Press, New York, NY, pp. 205–211 (1988).CrossRefGoogle Scholar
  16. 16.
    G. Borgefors, I. Ragnemalm, and G. Sanniti di Baja, The Euclidean distance transform: finding the local maxima and reconstructing, Proc. 7th Scandinavian Conf on Image Analysis, pp. 974-981 (1991).Google Scholar
  17. 17.
    G. Borgefors, Centres of maximal discs in the 5-7-11 distance transform, Proc. 8th Scandinavian Conf on Image Analysis, pp. 105-111 (1993).Google Scholar
  18. 18.
    C.J. Hilditch, Comparison of thinning algorithms on a parallel processor, Image Vision Comput., Vol. 1, p. 115 (1983).CrossRefGoogle Scholar
  19. 19.
    N.J. Naccache and R. Shinghal, An investigation into the skeletonization approach of Hilditch, Pattern Recogn., Vol.17, p. 279 (1984).CrossRefGoogle Scholar
  20. 20.
    F. Leymarie and M.D. Levine, Simulating the grassfire transform using an active contour model, IEEE Trans. Patt. Anal. Mach. Intell., Vol.14, No.1, pp. 56–75 (1992).CrossRefGoogle Scholar
  21. 21.
    L. Lam, S.W. Lee, and C.Y. Suen, Thinning methodologies-A comprehensive survey, IEEE Trans. Patt. Anal. Mach. Intell., Vol.14, p. 869 (1992).CrossRefGoogle Scholar
  22. 22.
    C. Arcelli, L.P. Cordella, and S. Levialdi, From local maxima to connected skeletons, IEEE Trans, on PAMI, Vol.3, pp. 134–143 (1981).CrossRefGoogle Scholar
  23. 23.
    C. Arcelli and G. Sanniti di Baja, A width-independent fast thinning algorithm, IEEE Trans, on Pattern Analysis and Machine Intelligence, Vol.7, pp. 463–474 (1985).CrossRefGoogle Scholar
  24. 24.
    C. Arcelli and G. Sanniti di Baja, A one-pass two-operations process to detect the skeletal pixels on the 4-distance transform, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.11, pp. 411–414 (1989).CrossRefGoogle Scholar
  25. 25.
    L. Dorst, Pseudo-Euclidean skeletons, Proc. 8th Int. Conf. on Pattern Recognition, pp. 286-288 (1986).Google Scholar
  26. 26.
    C. Arcelli and M. Frucci, Reversible skeletonization by (5, 7, 11)-erosion, in Visual Form Analysis and Recognition, C. Arcelli et al. eds., Plenum, New York, NY, pp. 21–28 (1992).Google Scholar
  27. 27.
    C. Arcelli and G. Sanniti di Baja, Ridge Points in Euclidean Distance Maps, Pattern Recognition Letters, Vol.13, p. 237 (1992).CrossRefGoogle Scholar
  28. 28.
    G. Sanniti di Baja, Well-Shaped, stable and reversible skeletons from the (3, 4)-distance transform, Journal of Visual Communication and Image Representation (1993).Google Scholar
  29. 29.
    C. Arcelli and G. Sanniti di Baja, Euclidean skeleton via center-of-maximal-disc extraction, Image and Vision Computing, Vol.11, p. 163 (1993).CrossRefGoogle Scholar
  30. 30.
    L.P. Cordella and G. Sanniti di Baja, Geometric properties of the union of maximal neighbourhoods, IEEE Trans. Patt. Anal. Mach. Intell., Vol.11, pp. 214–217 (1989).CrossRefGoogle Scholar
  31. 31.
    G. Sanniti di Baja, O (N) computation of projections and moments from the labelled skeleton, Comput. Vision Graphics Image Process., Vol.49, p. 369 (1990).CrossRefGoogle Scholar
  32. 32.
    C. Arcelli, R. Colucci, and G. Sanniti di Baja, On the description of digital strips, Proc. Int. Conf. on Artificial Intelligence Applications and Neural Networks, pp. 193-196 (1990).Google Scholar
  33. 33.
    G. Sanniti di Baja and E. Thiel, Shape Description via Weighted Skeleton Partition, Proc. 7th Int. Conf. on Image Anal. and Process., Bari, I (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Gabriella Sanniti di Baja
    • 1
  1. 1.Istituto di Cibernetica del CNRArco Felice (NA)Italy

Personalised recommendations