Neurophysiology of the Striate Cortex

  • Adriana Fiorentini


Recent findings on the structural and functional properties of the striate cortex of cats and primates are briefly reviewed. In particular these findings show that: i) different stimulus attributes are processed at least partially in parallel, ii) the responses of single neurones to a given visual stimulus are context-dependent, iii) some degree of neural plasticity is present even in the adult visual cortex, iv) multiplexed temporal codes may be used by visual neurons to transmit multiple messages about different stimulus qualities. Some properties of extrastriate visual areas are suggestive of further stages of visual processing that may be relevant for pattern recognition.


Visual Cortex Receptive Field Lateral Geniculate Nucleus Primary Visual Cortex Striate Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.H. Hubel and T. Wiesel, Receptive fields and functional architecture of monkey striate cortex, J. Physiol (Lond), Vol.195, pp. 215–243 (1968).Google Scholar
  2. 2.
    L. Maffei, Spatial frequency channels, in Handbook of Sensory Physiology, Vol.VIII: Perception, R. Held, H.W. Leibowitz, and H.L. Teuber eds., Springer-Verlag, Berlin, D, pp. 39–63 (1978).Google Scholar
  3. 3.
    D.H. Hubel and M.S. Livingstone, Segregation of form, colour and stereopsis in primate area 18, J. Neurosci., Vol.11, pp. 3378–3415 (1987).Google Scholar
  4. 4.
    M.S. Livingstone and D.H. Hubel, Psychophysical evidence for separate channels for the perception of form, colour, movement and depth, J. Neurosci., Vol.11, pp. 3416–3468 (1987).Google Scholar
  5. 5.
    E.A. DeYoe and D.C. Van Essen, Concurrent processing streams in monkey visual cortex, Trends Neurosci., Vol.11, pp. 219–226 (1988).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Mishkin, L.G. Ungeleider, and K.A. Macko, Object vision and spatial vision. Two cortical pathways, Trends Neurosci., Vol.6, pp. 414–417 (1983).CrossRefGoogle Scholar
  7. 7.
    D.C. Van Essen, C.H. Anderson, and DJ. Felleman, Information processing in the primate visual system: an integrated system perspective, Science, Vol.255, pp. 419–423 (1992).PubMedCrossRefGoogle Scholar
  8. 8.
    D.H. Hubel and T.N. Wiesel, Functional architecture of macaque monkey visual cortex, Proc. Roy. Soc. Lond. B, Vol.198, pp. 1–59 (1977).CrossRefGoogle Scholar
  9. 9.
    M.S. Livingstone and D.H. Hubel, Anatomy and physiology of a colour system in the primate visual cortex, J. Neurosci., Vol.4, pp. 309–356 (1984).PubMedGoogle Scholar
  10. 10.
    G.G. Blasdel, Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex, J. Neurosci., Vol.12, pp. 3115–3138 (1992).PubMedGoogle Scholar
  11. 11.
    G.G. Blasdel, Orientation selectivity, preference and continuity in monkey striate cortex, J. Neurosci., Vol. 12, pp. 3139–3161 (1992).PubMedGoogle Scholar
  12. 12.
    C.D. Gilbert and T.N. Wiesel, Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex, J. Neurosci., Vol.9, pp. 2432–2442 (1989).PubMedGoogle Scholar
  13. 13.
    C.D. Gilbert, Horizontal integration and cortical dynamics, Neuron, Vol.9, pp. 1–13 (1992).PubMedCrossRefGoogle Scholar
  14. 14.
    L. Maffei and A. Fiorentini, The unresponsive regions of visual cortical receptive fields, Vision Res., Vol. 16, pp. 1131–1139(1976).PubMedCrossRefGoogle Scholar
  15. 15.
    C.D. Gilbert and T.N. Wiesel, The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat, Vision Res., Vol.30, pp. 1689–1701 (1990).PubMedCrossRefGoogle Scholar
  16. 16.
    M.C. Morrone, D.C. Burr, and L. Maffei, Functional implications of cross-orientation inhibition of cortical visual cells. I: Neurophysiological evidence, Proc. R. Soc. Lond. B, Vol.216, pp. 335–354 (1982).PubMedCrossRefGoogle Scholar
  17. 17.
    D.C. Van Essen, E.A. De Yoe, J.F. Olivarria, J.J. Knierim, J.M. Fox, D. Sagi, and B. Julesz, Neural responses to static and moving texture patterns in visual cortex of the macaque monkey, in Neural Mechanisms of Visual Perception, D Man-Kit Lam and CD. Gilbert eds., PPC-GPC, Houston, TX, pp. 137–154 (1989).Google Scholar
  18. 18.
    D.Y. Ts’o, C.D. Gilbert, and T.N. Wiesel, Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis, J. Neurosci., Vol.8, pp. 1160–1170 (1986).Google Scholar
  19. 19.
    D.Y. Ts’o and C.D. Gilbert, The organization of chromatic and spatial interactions in the primate striate cortex, J. Neurosa, Vol.8, pp. 1712–1727 (1988).Google Scholar
  20. 20.
    C.M. Gray and W. Singer, Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex, Proc. Natl. Acad. Sci., USA, Vol.86, pp. 1698–1702 (1989).PubMedCrossRefGoogle Scholar
  21. 21.
    C.M. Gray, P. Koenig, A.K. Engel, and W. Singer, Oscillatory responses in cat visual cortex exibit intercolumnar synchronization which reflects global stimulus properties, Nature, Vol.338, pp. 334–337 (1989).PubMedCrossRefGoogle Scholar
  22. 22.
    C.M. Gray, A.K. Engel, P. Koenig, and W. Singer, Synchronous neuronal oscillations in cat visual cortex: functional implications, in Representations in Vision, A. Gorea ed., Univ. Press, Cambridge (1990).Google Scholar
  23. 23.
    A.B. Bonds, R.K. Snider, J.F. Kabara, P. Bush, and T.J. Seinowski, On the origin of oscillations in cells of the cat striate cortex, Inv. Ophth. Vis. Sci., Vol.34, p. 909 (1993).Google Scholar
  24. 24.
    U. Ribary, R. Llinas, F. Lado, A. Mogilner, A. Ioannides, R. Jagow, M. Joliot, and J. Volkmann, Origin and characteristics of coherent thalamo-cortical 40-Hz oscillations in the human brain, Soc. Neurosci. Abs., Vol.18, p. 1420 (1992).Google Scholar
  25. 25.
    C.D. Gilbert and T.N. Wiesel, Receptive field dynamics in adult primary visual cortex, Nature, Vol.356, pp. 150–152 (1992).PubMedCrossRefGoogle Scholar
  26. 26.
    G.H. Recanzone, M.M. Merzenich, and W.M. Jenkins, Frequency discrimination training engaging a restricted skin surface results in an emergence of a cutaneous response zone in cortical area 3a, J. Neurophysiol, Vol.67, pp. 1057–1070 (1992).PubMedGoogle Scholar
  27. 27.
    A. Fiorentini and N. Berardi, Limits in pattern discrimination: central and peripheral factors, in Vision and Visual Dysfunction, JJ. Kulikowsky, V. Valsh and J.J. Murray eds., MacMillan, London, UK, Vol.5 (1991).Google Scholar
  28. 28.
    P. Schiller, The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey, Visual Neurosci., Vol.10, pp. 717–746 (1993).CrossRefGoogle Scholar
  29. 29.
    P. Buisseret and L. Maffei, Extraocular proprioceptive projections to the visual cortex, Exp. Brain Res., Vol.28, pp. 421–425 (1977).PubMedGoogle Scholar
  30. 30.
    A. Fiorentini, M.C Cenni, and L. Maffei, Impairment of steroacuity in cats with oculomotor proprioceptive deafferentation, Exp. Brain Res., Vol.63, pp. 364–368 (1986).PubMedCrossRefGoogle Scholar
  31. 31.
    Y. Trotter, S. Celebrini, B. Sticanne, S. Thorpe, and M. Imbert, Modulation of neural steroscopic processing in Primate area V1 by the viewing distance, Science, Vol.257, pp. 1279–1281 (1992).PubMedCrossRefGoogle Scholar
  32. 32.
    J. Moran and R. Desiinone, Selective attention gates visual processing in the extrastriate cortex, Science, Vol.229, pp. 782–784 (1985).PubMedCrossRefGoogle Scholar
  33. 33.
    A. Cattaneo, L. Maffei, and M.C. Morrone, Patterns in the discharge of simple and complex visual cortical cells, Proc. R. Soc. Lond. B, Vol.212, pp. 279–297 (1981).PubMedCrossRefGoogle Scholar
  34. 34.
    J.W. McClurkin, L.M. Optican, B.J. Richmond, and T.J. Gawne, Concurrent processing and complexity of temporally encoded neuronal messages in visual perception, Science, Vol.253, pp. 675–677 (1991).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Adriana Fiorentini
    • 1
  1. 1.Istituto di Neurofisiologia del CNRPisaItaly

Personalised recommendations