Skip to main content

Structure and Function in the Retina

  • Chapter
Human and Machine Vision
  • 136 Accesses

Abstract

What makes the retina such an appealing object of investigation to neuroscientists? Obviously every student has his own answers, but still we believe all would agree on one point: the retina is comparable in complexity to the cortex itself, and yet it differs in one fundamental aspect - it is an isolated computational unit. We mean by this that its input and output can be known to a good level of accuracy, the input being an image projected by the lens onto the photoreceptors, and the output the electrical activity that can be recorded from the optic nerve. It is therefore possible, at least in principle, to determine precisely its input-output function and study the mechanisms by which this computation is achieved. Indeed this condition very seldom occurs for any later stage of cerebral processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Saltzmann, The Anatomy and Histology of the Human Eyeball in the Normal State, Chicago University Press, Chicago, IL (1912).

    Google Scholar 

  2. S. Ramón y Cajal, Histologie du System Nerveux de l’Homme et des Vertébrés, A. Malsine, Paris, F (1911).

    Google Scholar 

  3. S. Vallerga and S. Deplano, Differentiation, extent and layering of amacrine cell dendrites in the retina of a sparid fish, Proc. R. Soc. Lond. B, The Royal Society, Vol.221, pp. 465–477 (1984).

    Article  CAS  Google Scholar 

  4. J.E. Dowling, Organisation of vertebrate retinas, Invest Ophthalmol., J.B. Lippincott Company, Philadelphia, PA, Vol.9, pp. 655–680 (1970).

    PubMed  CAS  Google Scholar 

  5. S.A. Bloomfield, Two types of orientation-sensitive responses of amacrine cells in the mammalian retina, Nature, Vol.350, pp. 347–350 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. E. Kaplan, B.B. Lee, and R.M. Shapley, New views of primate retinal function, Progress in Retinal Research, Vol.9, pp. 273–336 (1990).

    Article  Google Scholar 

  7. H.M. Sakai and K.I. Naka, Neuron network in catfish retina: 1968–1987, Progress in Retinal Research, Vol.7, pp. 149–209 (1988).

    Article  Google Scholar 

  8. J. Repérant, N.P. Vesselkin, J.P. Rio, T.V. Ermakova, D. Miceli, J. Peyrichoux, and C. Weidner, La voie visuelle centrifuge n’existe-t-elle que chez les oiseaux?, Rev. Can. Biol., Vol.40, pp. 29–46 (1981).

    Google Scholar 

  9. A.D. Springer, Centrifugal innervation of goldfish retina from ganglion cells of the nervus terminalis, J. Comp. Neurol, Vol.214, pp. 404–415 (1983).

    Article  Google Scholar 

  10. C.L. Zucker and J.E. Dowling, Centrifugal fibres synapse on dopaminergic interplexiform cells in the teleost retina, Nature, Vol.300, pp. 166–168 (1987).

    Article  Google Scholar 

  11. J.E. Dowling, The retina: an approchable part of the brain, Harvard University Press, Cambridge, MA (1987).

    Google Scholar 

  12. C. Usai, CM. Ratto, and S. Bisti, Two systems of branching axons in monkey’s retina, Journal of Comp. Neurology, John Wiley & Sons Inc., Vol.308, pp. 149–161 (1991).

    Article  CAS  Google Scholar 

  13. G.M. Ratto and C. Usai, Computer aided tracing and encoding of axonal arborisations, J. Neurosci. Methods, Vol.36, pp. 33–43 (1991).

    Article  PubMed  CAS  Google Scholar 

  14. F.A. Miles, Centrifugal control of the avian retina. III Effects of electrical stimulation of the isthmo-optic tract on the receptive field properties of retinal ganglion cells, Brain Res., Vol.48, pp. 115–129 (1972).

    Article  PubMed  CAS  Google Scholar 

  15. L. Cervetto, P.L. Marchiafava, and E. Pasino, Influence of efferent retinal fibres on responsiveness of ganglion cells to light, Nature, Vol.260, pp. 56–57 (1976).

    Article  PubMed  CAS  Google Scholar 

  16. D.H. Barron and B.H.C. Matthews, Intermittent conduction in the spinal cord, J. Physiol (Lond.), Vol.85, pp. 73–103 (1935).

    CAS  Google Scholar 

  17. N. Stockbridge, Differential conduction at axonal bifurcations. II. Theoretical basis, J. Neurophysiol. (Bethesda), Vol.59, pp. 1286–1295 (1988).

    CAS  Google Scholar 

  18. N. Stockbridge and L.L. Stockbridge, Differential conduction at axonal bifurcations. I. Effect of electrotonic length, J. Neurophysiol. (Bethesda), Vol.59, pp. 1277–1285 (1988).

    CAS  Google Scholar 

  19. H.R. Lusher and J.S. Shiner, Simulation of axon potential propagation in complex terminal arborisations, Biophys. J., Biophysical Society, Vol.58, pp. 1389–1399 (1990).

    Article  Google Scholar 

  20. W. Rall, Core conductor theory and cable properties of neurons, in Handbook of Physiology: the Nervous System, Kandel, Brookhardt and Mountcastle eds., Williams and Wilkins Co. Baltimore, Vol.1, pp. 39–98 (1977).

    Google Scholar 

  21. I. Segev, J.W. Fleshman, and R.E. Burke, Compartmental models of complex neurons, in Methods in Neuronal Modeling, Koch and Segev eds., The MIT Press, Cambridge, MA, pp. 63–96 (1989).

    Google Scholar 

  22. I. Segev, J.W. Fleshman, J.P. Miller, and B. Bunow, Modeling the electrical behavior of anatomically complex neurons using a network analysis program: passive membrane, Biol. Cybern., Vol.53, pp. 27–40 (1985).

    Article  PubMed  CAS  Google Scholar 

  23. B. Bunow, I. Segev, and J.W. Fleshman, Modeling the electrical properties of anatomically complex neurons using a network analysis program: excitable membrane, Biol. Cyber., Vol.53, pp. 41–56 (1985).

    Article  CAS  Google Scholar 

  24. J.E. Dowling, Synaptic organisation of the frog retina: an electron microscopic analysis comparing the retinas of frog and primates, Proc. R. Soc. Lond. B, The Royal Society, Vol.170, pp. 205–228 (1968).

    Article  CAS  Google Scholar 

  25. S.A. Elias and J.K. Stevens, Brain. Res., Vol.196, pp. 365–372 (1980).

    Article  Google Scholar 

  26. R.W. Young, The organisation of vertebrate photoreceptor cells, in The Retina: Morphology, Function and Clinical Characteristics, Straatsma, Hall, Allen and Crescitelli eds., Forum in Medical Sciences 8, University of California Press, Berkeley, CA, pp. 177–210 (1969).

    Google Scholar 

  27. D.W. Robinson, G.M. Ratto, L. Lagnado, and P.A. McNaughton, Temperature dependence of the light response in rat rods, J. Physiol. (Lond.), Vol.462, pp. 465–481 (1993).

    CAS  Google Scholar 

  28. D.A. Baylor, T.D. Lamb, and K.W. Yau, Responses of retinal rods to single photons, J. Physiol. (Lond.), Vol.288, pp. 613–634 (1979).

    CAS  Google Scholar 

  29. D.A. Baylor, B.J. Nunn, and J.L. Schnapf, The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis, J. Physiol. (Lond.), Vol.357, pp. 575–607 (1984).

    CAS  Google Scholar 

  30. T.D. Lamb, P.A. McNaughton, and K.W. Yau, Spatial spread of activation and background desensitization in toad rod outer segments, J. Physiol (Lond.), Vol.263, pp. 257–286 (1981).

    Google Scholar 

  31. A.B. Fulton, R.M. Hansen, Yuan-Lin Yeh, and C.W. Tyler, Temporal summation in dark-adapted 10-week old infant, Vision Research, Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington 0X5 1GB, UK, Vol.31, pp. 1259–1269 (1991).

    Article  PubMed  CAS  Google Scholar 

  32. G.M. Ratto, D.W. Robinson, B. Yan, and P.A. McNaughton, Development of the light response in neonatal mammalian rods, Nature, Macmillan Magazines Ltd, Vol.351, pp. 654–657 (1991).

    Article  CAS  Google Scholar 

  33. L. Cervetto and G.M. Ratto, Neuronal circuits in living organisms, in Towards Biochips, ed. Nicolini, World Scientific Publishing Co., Singapore (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ratto, G.M., Martini, P. (1994). Structure and Function in the Retina. In: Cantoni, V. (eds) Human and Machine Vision. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1004-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1004-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1006-6

  • Online ISBN: 978-1-4899-1004-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics