Structure and Function in the Retina

  • Gian Michele Ratto
  • Paolo Martini


What makes the retina such an appealing object of investigation to neuroscientists? Obviously every student has his own answers, but still we believe all would agree on one point: the retina is comparable in complexity to the cortex itself, and yet it differs in one fundamental aspect - it is an isolated computational unit. We mean by this that its input and output can be known to a good level of accuracy, the input being an image projected by the lens onto the photoreceptors, and the output the electrical activity that can be recorded from the optic nerve. It is therefore possible, at least in principle, to determine precisely its input-output function and study the mechanisms by which this computation is achieved. Indeed this condition very seldom occurs for any later stage of cerebral processing.


Ganglion Cell Outer Segment Bipolar Cell Amacrine Cell Dendritic Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Saltzmann, The Anatomy and Histology of the Human Eyeball in the Normal State, Chicago University Press, Chicago, IL (1912).Google Scholar
  2. 2.
    S. Ramón y Cajal, Histologie du System Nerveux de l’Homme et des Vertébrés, A. Malsine, Paris, F (1911).Google Scholar
  3. 3.
    S. Vallerga and S. Deplano, Differentiation, extent and layering of amacrine cell dendrites in the retina of a sparid fish, Proc. R. Soc. Lond. B, The Royal Society, Vol.221, pp. 465–477 (1984).CrossRefGoogle Scholar
  4. 4.
    J.E. Dowling, Organisation of vertebrate retinas, Invest Ophthalmol., J.B. Lippincott Company, Philadelphia, PA, Vol.9, pp. 655–680 (1970).PubMedGoogle Scholar
  5. 5.
    S.A. Bloomfield, Two types of orientation-sensitive responses of amacrine cells in the mammalian retina, Nature, Vol.350, pp. 347–350 (1991).PubMedCrossRefGoogle Scholar
  6. 6.
    E. Kaplan, B.B. Lee, and R.M. Shapley, New views of primate retinal function, Progress in Retinal Research, Vol.9, pp. 273–336 (1990).CrossRefGoogle Scholar
  7. 7.
    H.M. Sakai and K.I. Naka, Neuron network in catfish retina: 1968–1987, Progress in Retinal Research, Vol.7, pp. 149–209 (1988).CrossRefGoogle Scholar
  8. 8.
    J. Repérant, N.P. Vesselkin, J.P. Rio, T.V. Ermakova, D. Miceli, J. Peyrichoux, and C. Weidner, La voie visuelle centrifuge n’existe-t-elle que chez les oiseaux?, Rev. Can. Biol., Vol.40, pp. 29–46 (1981).Google Scholar
  9. 9.
    A.D. Springer, Centrifugal innervation of goldfish retina from ganglion cells of the nervus terminalis, J. Comp. Neurol, Vol.214, pp. 404–415 (1983).CrossRefGoogle Scholar
  10. 10.
    C.L. Zucker and J.E. Dowling, Centrifugal fibres synapse on dopaminergic interplexiform cells in the teleost retina, Nature, Vol.300, pp. 166–168 (1987).CrossRefGoogle Scholar
  11. 11.
    J.E. Dowling, The retina: an approchable part of the brain, Harvard University Press, Cambridge, MA (1987).Google Scholar
  12. 12.
    C. Usai, CM. Ratto, and S. Bisti, Two systems of branching axons in monkey’s retina, Journal of Comp. Neurology, John Wiley & Sons Inc., Vol.308, pp. 149–161 (1991).CrossRefGoogle Scholar
  13. 13.
    G.M. Ratto and C. Usai, Computer aided tracing and encoding of axonal arborisations, J. Neurosci. Methods, Vol.36, pp. 33–43 (1991).PubMedCrossRefGoogle Scholar
  14. 14.
    F.A. Miles, Centrifugal control of the avian retina. III Effects of electrical stimulation of the isthmo-optic tract on the receptive field properties of retinal ganglion cells, Brain Res., Vol.48, pp. 115–129 (1972).PubMedCrossRefGoogle Scholar
  15. 15.
    L. Cervetto, P.L. Marchiafava, and E. Pasino, Influence of efferent retinal fibres on responsiveness of ganglion cells to light, Nature, Vol.260, pp. 56–57 (1976).PubMedCrossRefGoogle Scholar
  16. 16.
    D.H. Barron and B.H.C. Matthews, Intermittent conduction in the spinal cord, J. Physiol (Lond.), Vol.85, pp. 73–103 (1935).Google Scholar
  17. 17.
    N. Stockbridge, Differential conduction at axonal bifurcations. II. Theoretical basis, J. Neurophysiol. (Bethesda), Vol.59, pp. 1286–1295 (1988).Google Scholar
  18. 18.
    N. Stockbridge and L.L. Stockbridge, Differential conduction at axonal bifurcations. I. Effect of electrotonic length, J. Neurophysiol. (Bethesda), Vol.59, pp. 1277–1285 (1988).Google Scholar
  19. 19.
    H.R. Lusher and J.S. Shiner, Simulation of axon potential propagation in complex terminal arborisations, Biophys. J., Biophysical Society, Vol.58, pp. 1389–1399 (1990).CrossRefGoogle Scholar
  20. 20.
    W. Rall, Core conductor theory and cable properties of neurons, in Handbook of Physiology: the Nervous System, Kandel, Brookhardt and Mountcastle eds., Williams and Wilkins Co. Baltimore, Vol.1, pp. 39–98 (1977).Google Scholar
  21. 21.
    I. Segev, J.W. Fleshman, and R.E. Burke, Compartmental models of complex neurons, in Methods in Neuronal Modeling, Koch and Segev eds., The MIT Press, Cambridge, MA, pp. 63–96 (1989).Google Scholar
  22. 22.
    I. Segev, J.W. Fleshman, J.P. Miller, and B. Bunow, Modeling the electrical behavior of anatomically complex neurons using a network analysis program: passive membrane, Biol. Cybern., Vol.53, pp. 27–40 (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    B. Bunow, I. Segev, and J.W. Fleshman, Modeling the electrical properties of anatomically complex neurons using a network analysis program: excitable membrane, Biol. Cyber., Vol.53, pp. 41–56 (1985).CrossRefGoogle Scholar
  24. 24.
    J.E. Dowling, Synaptic organisation of the frog retina: an electron microscopic analysis comparing the retinas of frog and primates, Proc. R. Soc. Lond. B, The Royal Society, Vol.170, pp. 205–228 (1968).CrossRefGoogle Scholar
  25. 25.
    S.A. Elias and J.K. Stevens, Brain. Res., Vol.196, pp. 365–372 (1980).CrossRefGoogle Scholar
  26. 26.
    R.W. Young, The organisation of vertebrate photoreceptor cells, in The Retina: Morphology, Function and Clinical Characteristics, Straatsma, Hall, Allen and Crescitelli eds., Forum in Medical Sciences 8, University of California Press, Berkeley, CA, pp. 177–210 (1969).Google Scholar
  27. 27.
    D.W. Robinson, G.M. Ratto, L. Lagnado, and P.A. McNaughton, Temperature dependence of the light response in rat rods, J. Physiol. (Lond.), Vol.462, pp. 465–481 (1993).Google Scholar
  28. 28.
    D.A. Baylor, T.D. Lamb, and K.W. Yau, Responses of retinal rods to single photons, J. Physiol. (Lond.), Vol.288, pp. 613–634 (1979).Google Scholar
  29. 29.
    D.A. Baylor, B.J. Nunn, and J.L. Schnapf, The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis, J. Physiol. (Lond.), Vol.357, pp. 575–607 (1984).Google Scholar
  30. 30.
    T.D. Lamb, P.A. McNaughton, and K.W. Yau, Spatial spread of activation and background desensitization in toad rod outer segments, J. Physiol (Lond.), Vol.263, pp. 257–286 (1981).Google Scholar
  31. 31.
    A.B. Fulton, R.M. Hansen, Yuan-Lin Yeh, and C.W. Tyler, Temporal summation in dark-adapted 10-week old infant, Vision Research, Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington 0X5 1GB, UK, Vol.31, pp. 1259–1269 (1991).PubMedCrossRefGoogle Scholar
  32. 32.
    G.M. Ratto, D.W. Robinson, B. Yan, and P.A. McNaughton, Development of the light response in neonatal mammalian rods, Nature, Macmillan Magazines Ltd, Vol.351, pp. 654–657 (1991).CrossRefGoogle Scholar
  33. 33.
    L. Cervetto and G.M. Ratto, Neuronal circuits in living organisms, in Towards Biochips, ed. Nicolini, World Scientific Publishing Co., Singapore (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Gian Michele Ratto
    • 1
  • Paolo Martini
    • 2
  1. 1.Istituto di Neurofisiologia del CNRPisaItaly
  2. 2.Technobiochip MarcianaLivornoItaly

Personalised recommendations