Advertisement

Visual Thinking: Stability and Self-Organisation

  • Riccardo Luccio

Abstract

As Ashby and Lee1 recently pointed out, there is a great deal of trial-by-trial variability in all perceptual representations. However, stability is the first apparent visual concept of the world to which we have adjusted. Although proximal stimulation is continuously changing, our phenomenal world is usually stable, made up of objects which usually remain the same size, shape, colour and identity. The second aspect is harmony. Very often, objects in nature keep a specific regular and harmonic structure. It is interesting to note that we are particularly pleased when we find such regularity and harmony. Almost perfect beautiful examples of axial or central symmetry can be found in the inanimate world as well as in the biological world. These are often considered conclusive evidence that natural phenomena conform to natural laws. At the same time, the pleasure that we experience in perceiving regular and harmonic configurations (and the tension that we feel when we face configurations that depart from this regularity and harmony), is considered conclusive evidence of the fact that perceptual organisation is dominated by the tendency to Prägnanz. Therefore, this tendency can be considered the leading principle that governs perception.

Keywords

Circular Path Common Motion Biological Cybernetic Perceptual Field Bimanual Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.G. Ashby and W.W. Lee, Perceptual variability as a fundamental axiom of perceptual science, in Foundations of Perceptual Theory, S. Masin ed., Elsevier, Amsterdam, NL, pp. 369–399 (1993).CrossRefGoogle Scholar
  2. 2.
    G. Kanizsa and R. Luccio, Die Doppeldeutigkeiten der Prägnanz, Gestalt Theory, Vol.8, pp. 99–135 (1986).Google Scholar
  3. 3.
    G. Kanizsa and R. Luccio, Formation and categorization of visual objects: Höffding’s never confuted bus always forgotten argument, Gestalt Theory, Vol.9, pp. 111–127 (1987).Google Scholar
  4. 4.
    M. Wertheimer, Experimentelle Studien über das Sehen von Bewegung, Zeitschrift für Psychologie, Vol.62, pp. 371–394 (1912).Google Scholar
  5. 5.
    M. Wertheimer, Untersuchungen zur Lehre von der Gestalt I, Psychologische Forschung, Vol.1, pp. 47–58 (1922).CrossRefGoogle Scholar
  6. 6.
    M. Wertheimer, Untersuchungen zur lehre der Gestalt II, Psychologische Forschung, Vol.4, pp. 301–350 (1923).CrossRefGoogle Scholar
  7. 7.
    E. Goldmeier, The Memory Trace: Its Formation and Its Fate, Lawrence Erlbaum Ass., Hillsdale, NJ (1982).Google Scholar
  8. 8.
    G. Kanizsa and R. Luccio, The Phenomenology of Autonomous Order Formation in Perception, in Synergetics of Cognition, H. Haken and M. Stadler eds., Springer, Frankfurt, D, pp. 186–200 (1990).CrossRefGoogle Scholar
  9. 9.
    H. Haken, Synergetics: An Introduction, Springer, Berlin, D (1983).CrossRefGoogle Scholar
  10. 10.
    H. Haken, Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Device, Springer, Berlin, D (1983).Google Scholar
  11. 11.
    M. Stadler and P. Kruse, The self-organization perspective in cognition research: historical remarks and new experimental approaches, in Synergetics of Cognition, H. Haken and M. Stadler eds., Springer, Frankfurt, D, pp. 32–52 (1990).CrossRefGoogle Scholar
  12. 12.
    G. Kanizsa and R. Luccio, Multistability as a research tool in experimental phenomenology, in Perceptual Multistability and Semantic Ambiguity, M. Stadler and P. Kruse eds., Springer, Berlin, D (in press).Google Scholar
  13. 13.
    P. Kruse and M. Stadler, Stability and instability in cognive systems: multistability, suggestion and psychosomatic interaction, in Synergetics of Cognition, H. Haken and M. Stadler eds., Springer, Frankfurt, D, pp. 201–217 (1990).CrossRefGoogle Scholar
  14. 14.
    P. Kruse and M. Stadler, The relevance of instability and nonequilibrium phase transition in the research on cognitive systems, in Perceptual Multistability and Semantic Ambiguity, P. Haken and M. Stadler eds., Springer, Berlin, D (in press).Google Scholar
  15. 15.
    W. Köhler, Die Physischen Gestalten in Ruhe und im Stationren, Zustand, Braunschweig, Vieweg (1920).CrossRefGoogle Scholar
  16. 16.
    E. Rubin, Visuell wahrgenommene wirkliche Bewegungen, Zeitschrift für Psychologie, Vol. 103, pp. 384–392 (1927).Google Scholar
  17. 17.
    K. Duncker, Über induzierte Bewegung, Psychologische Forschung, Vol.12, pp. 180–259 (1929).CrossRefGoogle Scholar
  18. 18.
    J.E. Cutting and D.R. Proffitt, The minimum principle and the perception of absolute, common, and relative motion, Psychological Journal pp. 211-212 (1982).Google Scholar
  19. 19.
    G. Kanizsa, P. Kruse, R. Luccio, and M. Stadler, Conditions of visibility of actual paths, Japanese Psychological research (in press).Google Scholar
  20. 20.
    G. Johansson, Configurations in Event Perception, Almkvist Wilsell, Uppsala, S (1950).Google Scholar
  21. 21.
    G. Johansson, Visual perception of biological motion and a model for its analysis, Perception and Psychopsysics, Vol.14, pp. 201–211 (1973).CrossRefGoogle Scholar
  22. 22.
    P. von Schiller, Stroboskopische Alternativversuche, Psychologische Forschung, Vol.17, pp. 179–214 (1933).CrossRefGoogle Scholar
  23. 23.
    P. Kolers, The illusion of movement, Scientific American, Vol.211, pp. 98–106 (1964).PubMedCrossRefGoogle Scholar
  24. 24.
    F. Hoeth, Gesetzlichkeit bei stroboskopischen Alternativbewegungen, Kramer, Frankfurt, D (1966).Google Scholar
  25. 25.
    F. Hoeth, Bevorzugte Richtungen bei stroboskopischen Alternativbewegungen, Psychologische Beiträge, Vol.10, pp. 494–527 (1968).Google Scholar
  26. 26.
    H. Erke and H. Graeser, Reversibility of perceived motion: selective adaption of the human visual system to speed, size and orientation, Vision Research, Vol.12, pp. 69–87 (1972).PubMedCrossRefGoogle Scholar
  27. 27.
    V. Ramachandran, The neurobiology of perception, Perception, Vol.14, pp. 97–103 (1985).PubMedGoogle Scholar
  28. 28.
    E. Rubin, Visuell wahrgenommene Figuren. Teil 1, Gyldenalske, Kopenhagen, DK (1921).Google Scholar
  29. 29.
    P. Bahnsen, Symmetrie und Asymmetrie bei visuellen Wahrnehmungen, Zeitschrift für Psychologie, Vol.108, pp. 129–154 (1928).Google Scholar
  30. 30.
    S. Morinaga, Beobachtungen über Grundlagen und Wirkungen anschaulich gleichmässiger Breite, in Archiv für gesamte Psychologie, Vol. 110, pp. 310–348 (1942).Google Scholar
  31. 31.
    G. Kanizsa, The role of regularity in perceptual organization, in Studies in Perception, G. Flores d’Arcais ed., Martello-Giunti, Firenze, I, pp. 48–66 (1975).Google Scholar
  32. 32.
    I. Biederman, H.J. Hilton, and J.E. Hummel, Pattern goodness and pattern recognition, in The Perception of Structure, G.R. Lockhead and J.R. Pomerantz eds., APA, Washington DC, pp. 73–96 (1991).Google Scholar
  33. 33.
    S. Vogt, Einige gestaltpsychologische Aspekte der zeitlichen Organisation zyklischer Bewegungsabläufe, Bremer Beiträge zur Psychologie, No.77 (1988).Google Scholar
  34. 34.
    J.A.S. Kelso, J. Del Colle, and G. Schöner, Action-perception as a pattern formation process, in Attention and Performance XIII, M. Jeannerod ed., Erbaum, Hillsdale, NJ, pp. 139–169 (1990).Google Scholar
  35. 35.
    J.A.S. Kelso and A.S. Pandya, Dynamic pattern generation and recognition, in Making Them Move, N.I. Badler, B.A. Barsky, and D. Zelter eds., Morgan Kaufmann, San Mateo, CA, pp. 171–190 (1989).Google Scholar
  36. 36.
    H. Haken, J.A.S. Kelso, and H. Bunz, A theoretical model of phase transitions in human hand movements, Biological Cybernetics, Vol.51, pp. 347–356 (1985).PubMedCrossRefGoogle Scholar
  37. 37.
    G. Schöner and J.A.S. Kelso, A synergetic theory of environmentally-specified and learned patterns of movement coordination. I. Relative phase dynamics, Biological Cybernetics, Vol.58, pp. 71–80 (1988).PubMedCrossRefGoogle Scholar
  38. 38.
    G. Schöner and J.A.S. Kelso, A synergetic theory of environmentally-specified and learned patterns of movement coordination. II. Component oscillator dynamics, Biological Cybernetics, Vol.58, pp. 81–89 (1988).PubMedCrossRefGoogle Scholar
  39. 39.
    M. Stadler, P.H. Richter, S. Pfaff, and P. Kruse, Attractors and perceptual field dynamics of homogeneus stimulus area, Psychological Research, Vol.53, pp. 102–112 (1991).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Riccardo Luccio
    • 1
  1. 1.Dipartimento di PsicologiaUniversità di TriesteTriesteItaly

Personalised recommendations