Seeds pp 199-271 | Cite as

Dormancy and the Control of Germination

  • J. Derek Bewley
  • Michael Black


Whether or not a viable seed germinates and the time at which it does so depend on a number of factors, including those present in the seed’s environment. First, the chemical environment must be right. Water must be available, oxygen may have to be present since the seed must respire, and noxious or inhibitory chemicals should be absent. The physical environment, too, must be favorable. The temperature must be suitable and so also, in many cases, must the light quality and quantity. But in many instances all of these conditions may be satisfied and nevertheless the seed fails to germinate. The reason for this, as we have indicated in Chapter 1, is that there exists within the seed (or dispersal unit) itself some block(s) that must be removed or overcome before the germination process can proceed: such a seed is said to be dormant. To be released from dormancy, a seed must experience certain environmental factors or must undergo certain metabolic changes. Hence, the control of germination exists at two levels. One—dormancy—is related entirely to the state of the seed itself, and the second involves the operation of environmental factors on both dormancy and germination. We call these the internal and external controls, respectively. The relationship between dormancy and germination and the points at which control exists are shown in Fig. 5.1.


Seed Coat Fluence Rate Embryonic Axis Chenopodium Album Grand Rapid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Useful Literature References

Section 5.2

  1. Ballard, L. A. T., 1973, Seed Sci. Technol. 1:285–303 (seed coat effects).Google Scholar
  2. Barton, L. V., 1965, in: Encyclopedia of Plant Physiology, Volume 15/2 (W. Ruhland, ed.), Springer, Berlin, pp. 909–924 (general review on dormancy types).Google Scholar
  3. Bewley, J. D., and Black, M., 1982, Physiology and Biochemistry of Seeds, Volume 2, Springer-Verlag, Berlin (all aspects of dormancy).Google Scholar
  4. Cavers, P. B., and Harper, J. L., 1966, J. Ecol. 54:367–382 (polymorphism in Rumex).CrossRefGoogle Scholar
  5. Come, D., and Thevenot, C., 1982, in: The Physiology and Biochemistry of Seed Development, Dormancy and Germination (A. A. Khan, ed.), Elsevier, Amsterdam, pp. 271–298 (embryo dormancy).Google Scholar
  6. Coumans, M., Côme, D., and Gaspar, T., 1976, Bot. Gaz. 137:274–278 (oxygen consumption by beet seed coats).CrossRefGoogle Scholar
  7. Datta, S. C., Evenari, M., and Gutterman, Y., 1970, Isr. J. Bot. 19:463–483 (polymorphism in Aegilops).Google Scholar
  8. Edwards, M. M., 1969, J. Exp. Bot. 20:876–894 (oxygen and coat effects in Sinapis arvensis).CrossRefGoogle Scholar
  9. Esashi, Y., and Leopold, A. C., 1968, Plant Physiol. 43:871–876 (coat strength and embryo thrust).PubMedCrossRefGoogle Scholar
  10. Hamly, D. H., 1932, Bot. Gaz. 93:345–375 (seed coat structure).CrossRefGoogle Scholar
  11. Lenoir, C., Corbineau, F., and Côme, D., 1986, Physiol. Plant. 68:301–307 (oxygen uptake by enclosing tissues of barley seed).CrossRefGoogle Scholar
  12. Le Page-Degivry, M.-T., 1973, Biol. Plant. 15:264–269 (ABA and embryo dormancy).CrossRefGoogle Scholar
  13. Le Page-Degivry, M.-T., and Garello, G., 1992, Plant Physiol. 88:1386–1390 (ABA and induction of dormancy).CrossRefGoogle Scholar
  14. McKee, G. W., Pfeiffer, R. A., and Mohsenin, N. N., 1977, Agron. J. 69:53–58 (seed coat impermeability to water).CrossRefGoogle Scholar
  15. Porter, N. G., and Wareing, P. F., 1974, J. Exp. Bot. 25:583–594 (coat permeability to oxygen).CrossRefGoogle Scholar
  16. Rolston, M. P., 1978, Bot. Rev. 44:365–396 (coat impermeability to water).CrossRefGoogle Scholar
  17. Thevenot, C., and Côme, D., 1973, C. R. Acad. Sci. Ser. D 277:1873–1876 (cotyledons and embryo dormancy).Google Scholar

Section 5.3

  1. Bewley, J. D., and Black, M., 1982, Physiology and Biochemistry of Seeds, Volume 2, Springer-Verlag, Berlin (metabolism, control of dormancy).Google Scholar
  2. Goldmark, P. J., Curry, J., Morris, C. G., and Walker-Simmons, M. K., 1992, Plant Mol. Biol. 19:433–441 (“dormancy genes” in Bromus).PubMedCrossRefGoogle Scholar
  3. Hendricks, S. B., and Taylorson, R. B., 1979, Proc. Natl. Acad. Sci. USA 76:778–781 (membranes, dormancy, and germination).PubMedCrossRefGoogle Scholar
  4. Larondelle, Y., Corbineau, F., Dernier, M., Côme, D., and Hers, H. G., 1987, Eur. J. Biochem. 166:605–610 (fructose 2,6-bisphosphate and oat dormancy).PubMedCrossRefGoogle Scholar
  5. Morris, C. F., Armstrong, R. J., Goldmark, P. J., and Walker-Simmons, M. K., 1991, Plant Physiol. 95:814–821 (“dormancy genes” in wheat).PubMedCrossRefGoogle Scholar
  6. Roberts, E. H., and Smith, R. D., 1977, in: The Physiology and Biochemistry of Seed Dormancy and Germination (A. A. Khan, ed.), North-Holland, Amsterdam, pp. 385–411 (pentose phosphate pathway and germination).Google Scholar
  7. Ross, J.D., 1984, in: Seed Physiology, Volume 2. Germination and Reserve Mobilization (D. R. Murray, ed.), Academic Press, New York, pp. 45–75 (metabolic aspects of dormancy).Google Scholar
  8. Simmonds, J. A., and Simpson, G. M., 1971, Can. J. Bot. 49:1833–1840 (respiration of dormant wild oats).CrossRefGoogle Scholar

Section 5.4

  1. Balboa-Zavala, O., and Dennis, F. G., 1977, J. Am. Soc. Hortic. Sci. 102:633–637 (ABA and the onset of dormancy in apple).Google Scholar
  2. Cresswell, E. G., and Grime, J. P., 1981, Nature 291:583–585 (green enclosing tissues and the onset of dormancy).CrossRefGoogle Scholar
  3. Groot, S. P. C., and Karssen, C. M., 1992, Plant Physiol. 99:952–958 (dormancy and germination in ABA-deficient tomato mutants).PubMedCrossRefGoogle Scholar
  4. Gutterman, Y., 1980/81, Isr. J. Bot. 29:105–117 (onset of dormancy).Google Scholar
  5. Hayes, R. G., and Klein, W. H., 1974, Plant Cell Physiol. 15:643–663 (spectral quality of light and onset of dormancy).Google Scholar
  6. Karssen, C. M., 1970, Acta Bot. Neerl. 19:81–94 (photoperiodic induction of dormancy in Chenopodium).Google Scholar
  7. Karssen, C. M., 1980/81, Isr. J. Bot. 29:45–64 (secondary dormancy).Google Scholar
  8. Karssen, C. M., Brinkhorst-van der Swan, D. L. C., Breekland, A. E., and Koornneef, M., 1983, Planta 157:158–165 (ABA mutants and Arabidopsis dormancy).CrossRefGoogle Scholar
  9. Le Page-Degivry, M. T., and Garello, G., 1992, Plant Physiol. 98:1386–1390 (ABA and induction of dormancy).PubMedCrossRefGoogle Scholar
  10. Sawhney, R., and Naylor, J. M., 1979, Can. J. Bot. 57:59–63 (genetic aspects of dormancy in Avena fatua).CrossRefGoogle Scholar
  11. Sidhu, S. S., and Cavers, P. B., 1977, Bot. Gaz. 138:174–182 (onset of dormancy in Medicago).CrossRefGoogle Scholar

Section 5.5

  1. Bartley, M. R., and Frankland, B., Nature 300:750-752 (high-irradiance inhibition of germination).Google Scholar
  2. Bewley, J. D., 1979, in: The Plant Seed (I. Rubenstein, R. L. Phillips, C. B. Green, and B. E. Gengenbach, eds.), Academic Press, New York, pp. 219–239 (hormonal and chemical effects on dormancy, phytochrome).Google Scholar
  3. Black, M., 1980/81, Isr. J. Bot. 29:181–192 (hormones and dormancy).Google Scholar
  4. Borthwick, H. A., Hendricks, S. B., Toole, E. H., and Toole, V. K., 1954, Bot. Gaz. 115:205–225 (action spectrum for breaking of dormancy in lettuce).CrossRefGoogle Scholar
  5. Carpita, N. C., Nabors, M. W., Ross, C. W., and Petretic, N. L., 1979, Planta 144:225–233 (phytochrome and cell elongation).CrossRefGoogle Scholar
  6. Esashi, Y., Ishihara, N., Saijoh, K., and Saitoh, M., 1983, Plant Cell Environ. 6:47–54 (cyanide-resistant respiration and dormancy).Google Scholar
  7. Hanke, J., Hartmann, K. M., and Mohr, H., 1969, Planta 86:235–241 (phytochrome photoequilibria).CrossRefGoogle Scholar
  8. Hartmann, K. M., 1966, Photochem. Photobiol. 5:349–354 (absorption spectrum of phytochrome).CrossRefGoogle Scholar
  9. Hendricks, S. B., and Taylorson, R. B., 1978, Plant Physiol. 61:17–19 (temperature shifts and phytochrome).PubMedCrossRefGoogle Scholar
  10. Heydecker, W., Higgins, J., and Gulliver, R. L., 1973, Nature 246:42–44 (advancing germination with PEG).CrossRefGoogle Scholar
  11. Hilhorst, H. W. M., and Karssen, C. M., 1988, Plant Physiol. 86:591–597 (light, nitrate, and gibberellin—effects on germination).PubMedCrossRefGoogle Scholar
  12. Hilhorst, H. W. M., and Karssen, C. M., 1992, Plant Growth Regul. 11:225–238 (ABA, GA in dormancy and germination: mutants).CrossRefGoogle Scholar
  13. Kendrick, R. E., and Frankland, B., 1982, Phytochrome and Plant Growth, Arnold, London (a general account of phytochrome).Google Scholar
  14. Koller, D., and Negbi, M., 1959, Ecology 40:20–36 (dual effect of light on germination).CrossRefGoogle Scholar
  15. Logan, D.C., and Stewart, G. R., 1992, Seed Sci. Res. 2:179–190 (germination of seeds of parasites).CrossRefGoogle Scholar
  16. McCormac, A. C., Smith, H., and Whitelam, G. C., 1993, Planta 191:386–393 (germination of phytochrome transgenics).CrossRefGoogle Scholar
  17. Mohr, H., and Appuhn, U., 1963, Planta 60:274–288 (high-irradiance far-red effects).CrossRefGoogle Scholar
  18. Nabors, M. W., and Lang, A., 1971, Planta 101:1–25 (light and embryo water relations).CrossRefGoogle Scholar
  19. Roberts, E. H., 1965, J. Exp. Bot. 16:341–349 (temperature and afterripening).CrossRefGoogle Scholar
  20. Roberts, E. H., and Smith, R. D., 1977, in: The Physiology and Biochemistry of Seed Dormancy and Germination (A. A. Khan, ed.), North-Holland, Amsterdam, pp. 385–411 (pentose phosphate pathway and germination).Google Scholar
  21. Schöpfer, P., and Plachy, C., 1985, Plant Physiol. 77:676–686 (ABA effects on wall extensibility).PubMedCrossRefGoogle Scholar
  22. Taylorson, R. B., 1982, in: The Physiology and Biochemistry of Seed Development, Dormancy and Germination (A. A. Khan, ed.), Elsevier, Amsterdam, pp. 323–346 (light and other factors in seed germination).Google Scholar
  23. Thomas, T. H., 1977, in: The Physiology and Biochemistry of Seed Dormancy and Germination (A. A. Khan, ed.), North-Holland, Amsterdam, pp. 111–114 (growth regulators and germination).Google Scholar
  24. Thompson, P. A., 1973, in: Seed Ecology (W. Heydecker, ed.), Butterworths, London, pp. 31–58 (temperature and germination).Google Scholar
  25. Totterdell, S., and Roberts, E. H., 1979, Plant Cell Environ. 2:131–137 (chilling of Rumex).CrossRefGoogle Scholar
  26. Totterdell, S., and Roberts, E. H., 1980, Plant Cell Environ. 3:3–12 (alternating temperatures and germination).Google Scholar
  27. Upadhyaya, M. K., Simpson, G. M., and Naylor, J. M., 1981, Can. J. Bot. 59:1640–1646 (pentose phosphate pathway enzymes and dormancy).CrossRefGoogle Scholar
  28. Van Der Woude, W. J., and Toole, V. K., 1980, Plant Physiol. 66:220–224 (chilling and phytochrome action).CrossRefGoogle Scholar
  29. Vincent, E. M., and Roberts, E. H., 1977, Seed Sci. Technol. 5:659–670 (interacting factors and dormancy).Google Scholar
  30. Visser, T., 1956, Proc. K. Ned. Akad. Wet. C 59:314–324 (chilling and apple seed dormancy).Google Scholar
  31. Walker-Simmons, M. K., 1987, Plant Physiol. 84:61–66 (sensitivity to ABA and dormancy in wheat).PubMedCrossRefGoogle Scholar
  32. Williams, P. M., Bradbeer, J. W., Gaskin, P., and MacMillan, J., 1974, Planta 117:101–108 (chilling and gibberellins in hazel).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • J. Derek Bewley
    • 1
  • Michael Black
    • 2
  1. 1.Department of BotanyUniversity of GuelphGuelphCanada
  2. 2.Division of Life Sciences, King’s CollegeUniversity of LondonLondonEngland

Personalised recommendations