Seeds pp 147-197 | Cite as

Cellular Events during Germination and Seedling Growth

  • J. Derek Bewley
  • Michael Black
Chapter

Abstract

When dry, viable seeds imbibe water, a chain of events is initiated which ultimately results in the emergence of the radicle, signifying that germination has been successfully completed. On imbibition, metabolism quickly recommences. Respiration, enzyme and organelle activity, and RNA and protein synthesis are fundamental cellular activities intimately involved in germination and the preparation for subsequent growth. It is not surprising, therefore, that most research into the biochemistry of germination and growth has concentrated on these events in an attempt to elucidate the key processes which lead to the successful completion of germination. Even so, the amount of research on germination is very scanty, especially compared with that on seed development, and only sporadic progress has been made.

Keywords

Water Uptake Water Potential Pentose Phosphate Pathway Citric Acid Cycle Storage Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Useful Literature References

Section 4.1

  1. Collis-George, N., and Melville, M. D., 1978, Aust. J. Soil Res. 16:291–310 (seed surface-soil interactions).CrossRefGoogle Scholar
  2. Crowe, J. H., and Crowe, L. M., 1992, in: Water and Life (G. N. Somero, C. B. Osmond, and C. L. Bolis, eds.), Springer-Verlag, Berlin, pp. 87–103 (membrane integrity in dry organisms).CrossRefGoogle Scholar
  3. Currie, J. A., 1973: Seed Ecology (W. Heydecker, ed.), Butterworths, London, pp. 463–480 (seed-soil interactions).Google Scholar
  4. Finch-Savage, W. E., and Phelps, K., 1993, J. Exp. Bot. 44:407–414 (predicting germination in horticultural seed beds).CrossRefGoogle Scholar
  5. Hadas, A., 1970, Isr. J. Agric. Res. 20:3–14 (soil moisture stress and germination).Google Scholar
  6. Hagon, M. W., and Chan, C. W., 1977, Aust. J. Exp. Agric. Anim. Husb. 17:86–89 (soil moisture stress and germination).CrossRefGoogle Scholar
  7. Simon, E. W., and Raja Harun, R. M., 1972. J. Exp. Bot. 23:1076–1085 (leakage during imbibition).CrossRefGoogle Scholar
  8. Spaeth, S. C., 1987, Plant Physiol. 85:217–223 (extrusion of intracellular substances during imbibition).PubMedCrossRefGoogle Scholar
  9. Vertucci, C. W., 1989, in: Seed Moisture (P. C. Stanwood and M. B. McDonald, eds.), Crop Sci. Soc. America, Madison, Wisc, pp. 93–115 (extensive review on kinetics of seed imbibition).Google Scholar
  10. Vertucci, C. W., and Leopold, A. C., 1983, Plant Physiol. 72:190–193 (dynamics of soybean embryo imbibition).PubMedCrossRefGoogle Scholar
  11. Waggoner, P. E., and Parlange, J.-Y., 1976, Plant Physiol. 57:153–156 (water diffusivity and imbibition).PubMedCrossRefGoogle Scholar

Section 4.2

  1. Groot, S. P. C., Kieliszewska-Rokicka, B., Vermeer, E., and Karssen, C. M., 1988, Planta 174:500–504 (endosperm cell wall hydrolysis in tomato).CrossRefGoogle Scholar
  2. Hegarty, T. W., and Ross, H. A., 1978, Am. Bot. 42:1003–1005 (water stress, germination and growth).Google Scholar
  3. Ni, B.-R., and Bradford, K. J., 1993. Plant Physiol. 101:607–617 (germination of tomato seed).PubMedGoogle Scholar
  4. Rogan, P. G., and Simon, E. W., 1975, New Phytol. 74:273–275 (root elongation and mitosis).CrossRefGoogle Scholar
  5. Schopfer, P., and Plachy, C., 1985, Plant Physiol. 77:676–686 (germination of rapeseed).PubMedCrossRefGoogle Scholar
  6. Welbaum, G. E., and Bradford, K. J., 1990, Plant Physiol. 92:1046–1052 (imbibition and germination of muskmelon).PubMedCrossRefGoogle Scholar

Sections 4.3-4.5

  1. Botha, F. C., Potgieter, G. P., and Botha, A. M., 1992, Plant Growth Regul. 11:211–224 (respiration during germination: review).CrossRefGoogle Scholar
  2. Ehrenshaft, M., and Brambl, R., 1990, Plant Physiol. 93:295–304 (mitochondrial biogenesis in maize embryos).PubMedCrossRefGoogle Scholar
  3. Gould, S. E. B., and Rees, D. A., 1964, J. Sci. Food Agric. 16:702–709 (oligosaccharides and respiration).CrossRefGoogle Scholar
  4. Hourmant, A., and Pradet, A., 1981, Plant Physiol. 68:631–635 (early oxidative phosphorylation).PubMedCrossRefGoogle Scholar
  5. James, T. W., and Spencer, M. S., 1979, Plant Physiol. 64:431–434 (cyanide-insensitive respiration in peas).PubMedCrossRefGoogle Scholar
  6. Kennedy, R. A., Rumpho, M. E., and Fox, T. C., 1992, Plant Physiol. 100:1–6 (anaerobic metabolism in plants).PubMedCrossRefGoogle Scholar
  7. Kollöffel, C., 1968, Acta Bot. Need. 17:70–77 (ADH in peas).Google Scholar
  8. Morohashi, Y., 1986, Physiol. Plant. 66:653–658 (mitochondrial development in starchy and fatty seeds).CrossRefGoogle Scholar
  9. Morohashi, Y., and Bewley, J. D., 1980, Plant Physiol. 66:70–13 (pea mitochondrion development).PubMedCrossRefGoogle Scholar
  10. Morohashi, Y., Bewley, J. D., and Yeung, E. C., 1981, Plant Physiol. 68:318–323 (peanut mitochondrion development).PubMedCrossRefGoogle Scholar
  11. Nakayama, N., Iwatsuki, N., and Asahi, T., 1978, Plant Cell Physiol. 19:51–60 (mitochondrial degeneration and senescence).Google Scholar
  12. Pradet, A., and Prat, C., 1976, Etudes de Biologie Végétale, R. Jacques, Paris, pp. 561–574 (anoxia and ATP in rice).Google Scholar
  13. Pradet, A., Narayanan, A., and Vermeersch, J., 1968, Bull. Soc. Fr. Physiol. Veg. 14:107–114 (adenosine phosphate content of seeds).Google Scholar
  14. Purvis, A. C., and Fites, R. C., 1979, Bot. Gaz. 140:121–126 (glycolysis and PPP).CrossRefGoogle Scholar
  15. Rumpho, M. E., and Kennedy, R. A., 1981, Plant Physiol. 68:165–168 (anaerobic metabolism of Echinochloa).PubMedCrossRefGoogle Scholar
  16. Salon, C., Raymond, P., and Pradet, A., 1988, J. Biol. Chem. 263:12278–12287 (fatty acids, carbon fluxes, and respiration).PubMedGoogle Scholar

Section 4.6

  1. Bewley, J. D., and Marcus, A., 1990, Prog. Nucleic Acid Res. Mol. Biol. 38:165–193 (gene expression in germination and development).PubMedCrossRefGoogle Scholar
  2. Bino, R. J., Lanteri, S., Verhoeven, H. A., and Kraak, H. L., 1993, Ann. Bot. 72:181–187 (2C and 4C nuclear complements).CrossRefGoogle Scholar
  3. Bryant, J. A., and Dunham, V. L., 1988, Oxford Surv. Plant Mol. Cell Biol. 5:23–55 (review of nuclear DNA replication).Google Scholar
  4. Cheung, C. P., and Suhadolnik, R. J., 1978, Nature 271:357–358 (ribonucleotide triphosphates in wheat).CrossRefGoogle Scholar
  5. Conger, B. V., and Carabia, J. V., 1978, Environ. Exp. Bot. 18:55–59 (2C and 4C nuclear complements).CrossRefGoogle Scholar
  6. Cuming, A. C., and Lane, B. G., 1979, Eur. J. Biochem. 99:217–224 (mRNA changes during germination).PubMedCrossRefGoogle Scholar
  7. Datta, K., Parker, H., Averyhart-Fullard, V., Schmidt, A., and Marcus, A., 1987, Planta 170:209–216 (gene expression in germinating soybean).CrossRefGoogle Scholar
  8. Delseny, M., Aspart, L., and Guitton, Y., 1977, Planta 135:125–128 (loss of conserved mRNA during germination).CrossRefGoogle Scholar
  9. Dziegielewski, T., Kedzierski, W., and Pawalkiewicz, J., 1979, Biochim. Biophys. Acta 564:37–42 (tRNA repair).PubMedCrossRefGoogle Scholar
  10. Guilfoyle, T. J., and Jendrisak, J. J., 1978, Biochemistry 17:1860–1866 (RNA polymerases).PubMedCrossRefGoogle Scholar
  11. Guilfoyle, T. J., and Malcolm, S., 1980, Dev. Biol. 78:113–125 (RNA polymerases in soybean).PubMedCrossRefGoogle Scholar
  12. Ingle, J., and Sinclair, J., 1972, Nature 235:30–32 (rRNA gene amplification).PubMedCrossRefGoogle Scholar
  13. Lalonde, L., and Bewley, J. D., 1986, J. Exp. Bot. 37:754–764 (changes in mRNA populations during pea germination).CrossRefGoogle Scholar
  14. Lane, B. G., 1991, FASEB J. 5:2893–2901 (properties and occurrence of germin).PubMedGoogle Scholar
  15. Lane, B. G., Dunwell, J. M., Ray, J. A., Schmitt, M. R., and Cuming, A. C., 1993, J. Biol. Chem. 268:12239–12242 (germin is an oxalate oxidase).PubMedGoogle Scholar
  16. Marcus, A., Feeley, J., and Volcani, T., 1966, Plant Physiol. 41:1167–1172 (early polysome formation in wheat).PubMedCrossRefGoogle Scholar
  17. Misra, S., and Bewley, J. D., 1986, J. Exp. Bot. 37:364–374 (new mRNAs associated with germination).CrossRefGoogle Scholar
  18. Sen, S., Payne, P. I., and Osbome, D. J., 1975, Biochem. J. 148:381–387 (early RNA synthesis in rye).PubMedGoogle Scholar
  19. Spiegel, S., and Marcus, A., 1975, Nature 256:228–230 (protein synthesis without mRNA synthesis).CrossRefGoogle Scholar
  20. Zlatanova, J., and Ivanov, P., 1988, Plant Sci. 58:71–76 (DNA and histone synthesis in maize embryos).CrossRefGoogle Scholar
  21. Zlatanova, J., Ivanov, P., Stoilov, L. M., Chimshirova, K. V., and Stanchev, B. S., 1987, Plant Mol. Biol. 10:139–144 (DNA repair and synthesis in maize embryos).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • J. Derek Bewley
    • 1
  • Michael Black
    • 2
  1. 1.Department of BotanyUniversity of GuelphGuelphCanada
  2. 2.Division of Life Sciences, King’s CollegeUniversity of LondonLondonEngland

Personalised recommendations