Seeds pp 117-145 | Cite as

Development—Regulation and Maturation

  • J. Derek Bewley
  • Michael Black
Chapter

Abstract

We have seen in the previous chapter that seed development commences with the formation of the single-celled fertilized egg and (generally) terminates when the seed is mature. Between these events there occur many morphological, cellular, and biochemical/synthetic changes which are regulated in a coordinated manner so that the progeny of a particular species are phenotypically more or less identical. Development proceeds in an environment in which seeds are hydrated, yet they do not germinate. What, then, prevents seeds from germinating during development? And how are the controls which maintain seeds in a developmental mode eventually overcome to permit germination? Research into these questions has increased greatly since the first edition of this book appeared, and while much remains to be learned, enough is known to warrant a chapter dealing exclusively with this topic.

Keywords

Wild Rice Late Embryogenesis Abundant Desiccation Tolerance Castor Bean Late Embryogenesis Abundant Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Useful Literature References

Section 3.1

  1. Berry T., and Bewley, J. D., 1991, Planta 186:27–34 (regulation of tomato seed development in the fruit).CrossRefGoogle Scholar
  2. Karssen, C.M., Groot, S. P. C., and Koorneef, M., 1987, in: Developmental Mutants in Higher Plants (H. Thomas and D. Grierson, eds.), Cambridge University Press, Cambridge, pp. 119–133 (hormone mutants in Arabidopsis and tomato).Google Scholar
  3. Welbaum, G. E., Tissaoui, T., and Bradford, K. J., 1990, Plant Physiol. 92:1029–1037 (one of series of papers on muskmelon seed development in the fruit).PubMedCrossRefGoogle Scholar
  4. Xu, N., Coulter, K. M., and Bewley, J. D., 1990, Planta 182:382–390 (prevention of alfalfa seed germination during development).CrossRefGoogle Scholar

Section 3.2

  1. Fong, F., Smith, J. D., and Koehler, D. E., 1983, Plant Physiol. 73:899–901 (fluridone and precocious germination of maize).PubMedCrossRefGoogle Scholar
  2. McCarty, D. R., and Carson, C. B., 1991, Physiol. Plant. 81:267–272 (review of maize vp mutants and molecular aspects).CrossRefGoogle Scholar
  3. McCarty, D. R., Carson, C. B., Stinard, P. S., and Robertson, D. S., 1989, Plant Cell 1:523–532 (molecular effects of vpl mutant on maize development).PubMedGoogle Scholar
  4. Neill, S. J., Horgan, R., and Parry, A. D., 1986, Planta 169:87–96 (ABA and carotenoid content of maize mutants).CrossRefGoogle Scholar
  5. Parry, A. D., and Horgan, R., 1992, in: Progress in Plant Growth Regulation (C. M. Karssen, L. C. van Loon, and D. Vreugdenhil, eds.), Kluwer, Dordrecht, pp. 160–172 (ABA biosynthesis in plants).CrossRefGoogle Scholar

Section 3.3

  1. Aldridge, C. D., and Probert, R.J., 1992, Seed Sci. Res. 2:199–205 (partial drying of desiccation-sensitive seeds).CrossRefGoogle Scholar
  2. Bartels, D., Singh, M., and Salamini, F., 1988, Planta 175:485–492 (desiccation tolerance and germinability of barley).CrossRefGoogle Scholar
  3. Bartels, D., Schneider, G., Terstappen, D., Piatkowski, D., and Salamini, F., 1990, Planta 181:27–34 (lea genes in a resurrection plant, especially ABA-regulated ones).CrossRefGoogle Scholar
  4. Blackman, S. A., Obendorf, R. L., and Leopold, A. C., 1992, Plant Physiol. 100:225–230 (sugars and proteins in maturation of soybean seeds).PubMedCrossRefGoogle Scholar
  5. Bray, E. A., 1991, Abscisic Acid Physiology and Biochemistry (W.J. Davies and H. G. Jones, eds.), Bios Scientific Publishers, Oxford (ABA-induced production of LEAs during drought stress).Google Scholar
  6. Chen, Y., and Burris, J. S., 1990, Crop Sci. 30:971–975 (carbohydrates in maturing maize embryos in relation to desiccation tolerance).CrossRefGoogle Scholar
  7. Cornford, C. A., Black, M., Chapman, J. M., and Baulcombe, D. C., 1986, Planta 169:420–428 (α-amylase synthesis, GA response and desiccation in wheat).CrossRefGoogle Scholar
  8. Dure, L.S., 1993, in: Control of Plant Gene Expression (D.P.S. Verma, ed.), CRC Press, Boca Raton, Fla., pp.325–335 (LEA proteins in higher plants).Google Scholar
  9. Dure, L. S., Crouch, M., Harada, J.J., Ho, T.-H. D., Mundy, J., Quatrano, R. S., Thomas, T., and Sung, Z. R., 1989, Plant Mol. Biol. 12:475–486 (amino acid sequence homologies of different LEAs).CrossRefGoogle Scholar
  10. Galau, G. A., Bijaisoradat, N., and Hughes, D.W., 1987, Dev. Biol. 123:198–212 and 213-221 (LEA protein accumulation and ABA).PubMedCrossRefGoogle Scholar
  11. Hughes, D. W., and Galau, D. W., 1989, Gene. Dev. 3:358–369 (LEA protein accumulation in cotton embryos).PubMedCrossRefGoogle Scholar
  12. Kermode, A. R., 1990, Crit. Rev. Plant Sci. 9:155–195 (extensive review on desiccation of seeds).CrossRefGoogle Scholar
  13. Kermode, A. R., and Bewley, J. D., 1985, J. Exp. Bot. 36:1906–1915 and 1916-1927 (desiccation tolerance and the switch from development to germination).CrossRefGoogle Scholar
  14. Kermode, A. R., and Bewley, J. D., 1989, Plant Physiol. 90:702–707 (partial drying and the switch from development to germination).PubMedCrossRefGoogle Scholar
  15. Koster, K. L., and Leopold, A. C., 1988, Plant Physiol. 88:829–832 (sugars and desiccation tolerance).PubMedCrossRefGoogle Scholar
  16. Leprince, O., Hendry, G. A. F., and McKersie, B. D., 1993, Seed Sci. Res. 3:275–290 (review on desiccation tolerance).CrossRefGoogle Scholar
  17. Meurs, C., Basra, A. S., Karssen, C. M., and van Loon, L. C., 1992, Plant Physiol. 98:1484–1493 (ABA mutants and desiccation tolerance).PubMedCrossRefGoogle Scholar
  18. Miles, D. F., TeKrony, D. M., and Egli, D. B., 1988, Crop Sci. 28:700–704 (soybean germination and seedling establishment without desiccation).CrossRefGoogle Scholar
  19. Mundy, J., and Chua, N. H., 1988, EMBO J. 7:2279–2286 (drought and ABA-induced LEAs in rice seedlings).PubMedGoogle Scholar
  20. Oliver, M. J., and Bewley, J. D., 1992, in: Water and Life (G. N. Somero, C. B. Osmond, and C. L. Bolis, eds.) Springer-Verlag, Berlin, pp. 141–160 (review on desiccation tolerance).Google Scholar
  21. Ooms, J. J. J., Leon-Kloosterziel, K. M., Bartels, D., Koornneef, M., and Karssen, C.M., 1993, Plant Physiol. 102:1185–1191 (desiccation tolerance, sugars in Arabidopsis mutants).PubMedGoogle Scholar
  22. Roberts, J. K., Desimone, N. A., Lingle, W. L., and Dure, L. S., 1993, Plant Cell 5:769–780 (subcellular location of LEAs in cotton embryos).PubMedGoogle Scholar

Section 3.4

  1. Edwards, M., 1976, Plant Physiol. 58:237–239 (dry charlock seed metabolism).PubMedCrossRefGoogle Scholar
  2. Leopold, A. C., and Vertucci, C. W., 1989, in: Seed Moisture (P.C. Stanwood and M.B. McDonald, eds.), Crop Sci. Soc. America, Madison, pp. 51–67 (cellular responses to low water content).Google Scholar
  3. Leopold, A. C., Bruni, F., and Williams, R. J., 1992, in: Water and Plant Life (G. N. Somero, C. B. Osmond, and C. L. Bolis, eds.), Springer-Verlag, Berlin, pp. 161–170 (water in dry organisms).CrossRefGoogle Scholar
  4. Opik, H., 1980, New Phytol. 85:521–529 (dry seed structure).CrossRefGoogle Scholar
  5. Williams, R. J., and Leopold, A.C., 1989, Plant Physiol. 89:977–981 (glassy state in corn embryos).PubMedCrossRefGoogle Scholar

Section 3.5

  1. Berjak, P., Farrant, J. M., and Pammenter, N. W., 1989, in: Recent Advances in the Development and Germination of Seeds (R.B. Taylorson, ed.), Plenum Press, New York, pp. 89–108 (basis of recalcitrant seed behavior).CrossRefGoogle Scholar
  2. Chin, H. F., and Roberts, E. H. (eds.), 1980, Recalcitrant Crop Seeds, Tropical Press, Malaysia (several review articles).Google Scholar
  3. Dickie, J. B., May, K., Morris, S. V. A., and Titley, S. E., 1991, Seed Sci. Res. 1:149–162 (recalcitrance and orthodoxy in two Acer species).CrossRefGoogle Scholar
  4. Ellis, R. H., Hong, T. D., and Roberts, E. H., 1990, J. Exp. Bot. 41:1167–1174 (intermediate category of storage behavior).CrossRefGoogle Scholar
  5. Farrant, J. M., Pammenter, N. W., and Berjak, P., 1993, Seed Sci. Res. 3:1–14 (a detailed consideration of recalcitrance in Avicennia marina).Google Scholar
  6. King, M. W., and Roberts, E. H., 1979, Report for the International Board for Genetic Resources Secretariat, Rome, (recalcitrant seed storage).Google Scholar
  7. Kovach, D. A., and Bradford, K. J., 1992, J. Exp. Bot. 43:747–757 (drying conditions and recalcitrance in wild rice).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • J. Derek Bewley
    • 1
  • Michael Black
    • 2
  1. 1.Department of BotanyUniversity of GuelphGuelphCanada
  2. 2.Division of Life Sciences, King’s CollegeUniversity of LondonLondonEngland

Personalised recommendations