Advertisement

Seeds pp 35-115 | Cite as

Seed Development and Maturation

  • J. Derek Bewley
  • Michael Black
Chapter

Abstract

Before we can consider the specific physiological and biochemical processes intimately involved in seed development, it is necessary to review briefly the morphological and anatomical aspects of embryo and storage tissue formation. The variations in patterns of development are numerous, so we will present here only a generalized picture of what occurs in a conifer (gymnosperm), a dicot, and a monocot angiosperm.

Keywords

Seed Coat Storage Protein Seed Development Protein Body Acyl Carrier Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Useful Literature References

Section 2.1

  1. Castle, L. A., and Meinke, D. W., 1993, Semin. Dev. Biol. 4:31–39 (embryo-defective mutants, especially in Arabidopsis).CrossRefGoogle Scholar
  2. Johansen, D. A., 1950, Plant Embryology. Embryology of the Spermatophyta, Chronica Botanica, Waltham, Mass. (developmental patterns).Google Scholar
  3. Lindsey, K., and Topping, J. F., 1993, J. Exp. Bot. 44:359–374 (embryogenic development patterns).CrossRefGoogle Scholar
  4. Maheshwari, P., 1950, An Introduction to the Embryology of Angiosperms, McGraw-Hill, New York (developmental patterns).Google Scholar
  5. Marinos, N. G., 1970, Protoplasma 70:261–279 (embryogenesis of the pea).CrossRefGoogle Scholar
  6. Meinke, D. W., 1991, Plant Cell 3:857–866 (developmental mutants and embryogenesis).PubMedGoogle Scholar
  7. Olsen, O.-A., Potter, R. H., and Kalla, R., 1992, Seed Sci. Res. 2:117–131 (cereal endosperm development).CrossRefGoogle Scholar
  8. Raghavan, V., 1986, Embryogenesis in Angiosperms. A Developmental and Experimental Study, Cambridge University Press, Cambridge (zygotic and somatic embryogenesis).Google Scholar
  9. Sheridan, W. F. and Clark, J. K., 1993, Plant J. 3:347–358 (embryo mutants in maize).CrossRefGoogle Scholar
  10. Singh, H., 1978, Embryology of Gymnosperms, Borntraeger, Berlin (structure and development).Google Scholar
  11. The Plant Cell, 1993, 5:1139-1488 (special review issue on plant reproduction, including articles on seed development, embryogenesis).Google Scholar
  12. Xu, N., and Bewley, J. D., 1992, Plant Cell Rep. 11:279–284 (SEM of alfalfa embryo development).Google Scholar

Section 2.2

  1. Barneix, A. J., Arnozis, P. A., and Guitman, M. R., 1992, Physiol. Plant. 86:609–615 (N accumulation in wheat grains).CrossRefGoogle Scholar
  2. Hardham, A. R., 1976, Aust. J. Bot. 24:711–721 (vascular transport in pea seeds).CrossRefGoogle Scholar
  3. Jenner, C. F., Ugalde, T. D., and Aspinall, D., 1991, Aust. J. Plant Physiol. 18:211–226 (starch and protein accumulation in wheat endosperm, and stress effects).CrossRefGoogle Scholar
  4. Johnson-Flanaghan, A. M., and McLachlan, G., 1990, Physiol. Plant. 80:460–466 (frost and green seed coats in canola).CrossRefGoogle Scholar
  5. Miller, M. E., and Chourey, P. S., 1992, Plant Cell 4:297–305 (sucrose uptake in maize and invertase mutant).PubMedGoogle Scholar
  6. Pate, J. S., 1984, in: Seed Physiology. Volume I, Development (D. R. Murray, ed.), Academic Press, New York, pp. 41–82 (C and N translocation in legume plants).Google Scholar
  7. Rochat, G., and Boutin, J.-P., 1991, J. Exp. Bot. 42:207–214 (amino acid composition of assimilates in seed coats and embryos).CrossRefGoogle Scholar
  8. Sakri, F. A. K., and Shannon, J. C., 1975, Plant Physiol. 55:881–889 (sugar translocation into wheat grains).PubMedCrossRefGoogle Scholar
  9. Shannon, J. C., 1972, Plant Physiol. 49:198–202 (sugar translocation into maize kernels).PubMedCrossRefGoogle Scholar
  10. Tanaka, T., Minamikawa, T., Yamauchi, D., and Ogushi, Y., 1993, Plant Physiol. 101:421–428 (proteins and proteinases in legume pods).PubMedGoogle Scholar
  11. Thorne, J.H., 1985, Annu. Rev. Plant Physiol. 36:317–343 (unloading of C and N assimilates into seeds).CrossRefGoogle Scholar
  12. Westgate, M. E., and Peterson, C. M., 1993, J. Exp. Bot. 44:109–117 (stress effects on soybean pod development).CrossRefGoogle Scholar
  13. Wolswinkel, P., 1992, Seed Sci. Res. 2:59–73 (transport of nutrients into developing seeds).CrossRefGoogle Scholar

Section 2.3. Carbohydrates

  1. Bhattacharyya, M. K., Smith, A. M., Ellis, T. H. N., Hedley, C., and Martin, C., 1990, Cell 60:115–122 (wrinkled pea mutant and defective starch synthesis).PubMedCrossRefGoogle Scholar
  2. Buttrose, M. S., 1960, J. Ultrastruct. Res. 4:231–257 (cereal starch granule formation).PubMedCrossRefGoogle Scholar
  3. Edwards, M., Scott, C., Gidley, G., and Reid, J. S. G., 1992, Planta 187:67–74 (galactomannan biosynthesis).CrossRefGoogle Scholar
  4. Preiss, J., 1991, Oxford SUIT. Plant Mol. Cell Biol. 7:59–114 (starch synthesis and its regulation in plants).Google Scholar
  5. Reid, J. S. G., 1985, in: Biochemistry of Storage Carbohydrates in Green Plants (P. M. Dey and R. A. Dixon, eds.), Academic Press, New York, pp. 265–288 (galactomannans in seeds).Google Scholar
  6. Smith, A. M., and Denyer, K., 1992, New Phytol. 122:21–33 (starch synthesis in developing pea seeds).CrossRefGoogle Scholar
  7. Wang, T. L., and Hedley, C. L., 1991, Seed Sci. Res. 1:3–14 (metabolism and pea seed development).CrossRefGoogle Scholar

Section 2.3. Triacylglycerols

  1. Appleby, R. S., Gurr, M. I., and Nichols, B. W., 1974, Eur. J. Biochem. 48:209–216 (triacylglycerol synthesis in Crambe).PubMedCrossRefGoogle Scholar
  2. Garces, R., Sarmiento, C., and Mancha, M., 1992, Planta 186:461–465 (temperature affects oleate desaturase in developing sunflower seeds).CrossRefGoogle Scholar
  3. Holbrook, L. A., Magus, J. R., and Taylor, D. C., 1992, Plant Sci. 84:99–115 (regulation of triacylglycerol biosynthesis in microspore-derived embryos).CrossRefGoogle Scholar
  4. Huang, A. H. C., 1992, Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:177–200 (oil bodies and oleosins).CrossRefGoogle Scholar
  5. Murphy, D. J., Rawsthorne, S., and Hill, M. J., 1993, Seed Sci. Res. 3:79–96 (review on triacylglycerol formation in seeds).CrossRefGoogle Scholar
  6. Rodriguez-Sotres, R., and Black, M., 1993, Planta 192:9–15 (regulation of triacylglycerol synthesis in embryos—ABA and osmotica).CrossRefGoogle Scholar
  7. Simcox, P. D., Reid, E. E., Canvin, D. T., and Dennis, D. T., 1977, Plant Physiol. 59:1128–1132 (proplastids in developing castor bean endosperm).PubMedCrossRefGoogle Scholar
  8. Slabas, A. R., and Fawcett, T., 1992, Plant Mol. Biol. 19:169–191 (review article on the molecular biology of lipid biosynthesis in plants).PubMedCrossRefGoogle Scholar
  9. Stumpf, P. K., 1977, in: Lipids and Lipid Polymers in Higher Plants (M. Tevini and H. K. Lichtenthaler, eds.) Springer-Verlag, Berlin, pp. 75–84 (lipid biosynthesis in seeds: a review).CrossRefGoogle Scholar
  10. Stymne, S., and Stobart, A. K., 1987, in: The Biochemistry of Plants, Vol. 9 (P. K. Stumpf, ed.) Academic Press Inc., pp. 175-214 (review article on triacylglycerol biosynthesis).Google Scholar
  11. Tzen, J. T. C., Cao, Y.-Z., Laurent, P., Ratnayake, C., and Huang, A. H. C., 1993, Plant Physiol. 101:267–276 (oleosins and oil bodies from diverse species).PubMedGoogle Scholar
  12. Wanner, G., Formanek, H., and Theimer, R. R., 1981, Planta 151:109–123 (oil body formation).CrossRefGoogle Scholar

Section 2.3. Proteins

  1. Altschuler, Y., Rosenberg, N., Hard, R., and Galili, G., 1993, Plant Cell 5:443–450 (N-and C-terminal regions of gliadin, and sorting).PubMedGoogle Scholar
  2. Baumlein, H., Boerjan, W., Nagy, I., Panitz, R., Inze, D., and Wobus, U., 1991, Mol. Gen. Genet. 225:121–128 (upstream sequences regulating legumin gene expression in transgenics).PubMedGoogle Scholar
  3. Bednarek, S. Y., and Raikhel, N. V., 1992, Plant Mol. Biol. 20:133–150 (synthesis, processing, and transport of storage proteins).PubMedCrossRefGoogle Scholar
  4. Bewley, J. D., and Greenwood, J. S., 1990, in: Plant Physiology, Biochemistry and Molecular Biology (D. T. Dennis and D. H. Turpin, eds.), Longman Scientific and Technical, Harlow, pp. 456–469 (storage protein synthesis and deposition in seeds).Google Scholar
  5. Blobel, G., Walter, P., Chang, C. N., Goldman, B. H., Erickson, A. H., and Lingappa, V. R., 1979, in: Symp. Soc. Exp. Biol., 33:9–36 (signal hypothesis and protein passage through membranes).PubMedGoogle Scholar
  6. Boulter, D., Evans, I. M., Ellis, J. R., Shirsat, A. H., Gatehouse, J. A., and Croy, R. R. D., 1987, Plant Physiol. Biochem. 25:283–289 (storage protein gene expression in Pisum sativum).Google Scholar
  7. Brandt, A., 1976, Cereal Chem. 53:890–901 (protein synthesis in high-lysine barley).Google Scholar
  8. Chrispeels, M. J., 1985, Oxford Surv. Plant Mol. Cell Biol. 2:43–68 (posttranslational modifications to vacuolar storage proteins).Google Scholar
  9. Chrispeels, M. J., 1991, Annu. Rev. Plant Physiol Plant Mol. Biol. 42:21–53 (sorting and secretion of proteins).CrossRefGoogle Scholar
  10. Chrispeels, M. J., and Raikhel, N. V., 1992, Cell 68:613–616 (amino acid domains for protein sorting and targeting).PubMedCrossRefGoogle Scholar
  11. Craig, S., Goodchild, D. J., and Hardman, A. R., 1979, Aust. J. Plant Physiol. 6:81–98 (vacuole changes and protein deposition in pea).CrossRefGoogle Scholar
  12. Craig, S., Goodchild, D. J., and Hardham, A. R., 1980, Aust. J. Plant Physiol. 7:327–337 (vacuole changes and protein deposition in pea).Google Scholar
  13. Dickinson, C. D., Hussein, E. H. A., and Nielsen, N. C., 1989, Plant Cell 1:459–469 (assembly of glycinin).PubMedGoogle Scholar
  14. Dure, L. III, and Galau, G. A., 1981, Plant Physiol. 68:187–194 (processing of cottonseed proteins).PubMedCrossRefGoogle Scholar
  15. Gatehouse, J. A., and Shirsat, H. A., 1993, in: Control of Plant Gene Expression (D. P. S. Verma, ed.), CRC Press, Boca Raton, Fla., pp. 357–375 (seed storage protein gene expression).Google Scholar
  16. Gatehouse, J. A., Evans, I. M., Bown, D., Croy, R. R. D., and Boulter, D., 1982, Biochem. J. 208:119–127 (storage protein synthesis in developing pea seeds).PubMedGoogle Scholar
  17. Gatehouse, J. A., Evans, I. M., Croy, R. R. D., and Boulter, D., 1986, Philos. Trans. R. Soc. London 314:367–384 (expression of storage protein genes in developing legume seeds).CrossRefGoogle Scholar
  18. Gayler, K. R., and Sykes, G. E., 1981, Plant Physiol 67:958–961 (conglycinin synthesis in soybean).PubMedCrossRefGoogle Scholar
  19. Holwerda, B. C., Padgett, H. S., and Rogers, J. C., 1992, Plant Cell 4:307–318 (targeting of a protein through an N-terminal domain).PubMedGoogle Scholar
  20. Itoh, Y., Kitamura, Y., Arahira, M., and Fukazawa, C., 1993, Plant Mol. Biol. 21:973–984 (cis-acting regions of soybean 11 S globulin and DNA-binding proteins).PubMedCrossRefGoogle Scholar
  21. Johnson, K. D., and Chrispeels, M. J., 1987, Plant Physiol. 84:1301–1308 (processing oligosaccharide side chains).PubMedCrossRefGoogle Scholar
  22. Kawagoe, Y., and Murai, N., 1992, Plant J. 2:927–936 (spatial and temporal specificity of ß-phaseolin gene expression).PubMedGoogle Scholar
  23. Kermode, A. R., 1994, in: Mechanisms of Plant Growth and Improved Productivity (A. S. Basra, ed.), Dekker, New York, in press (regulation of protein synthesis posttranslationally).Google Scholar
  24. Krishnan, H. B., Franceschi, V. R., and Okita, T. W., 1986, Planta 169:471–480 (protein body formation in rice grains is as in legume seeds).CrossRefGoogle Scholar
  25. Krochko, J. E., and Bewley, J. D., 1989, Electrophoresis 9:751–763 (storage protein synthesis and analytical methods).CrossRefGoogle Scholar
  26. Larkins, B. A., and Hurkman, W. J., 1978, Plant Physiol 62:256–263 (zein deposition in protein bodies).PubMedCrossRefGoogle Scholar
  27. Larkins, B. A., Pedersen, K. Handa, A. K., Hurkman, W. J., and Smith, L. D., 1979, Proc. Natl. Acad. Sci. USA 76:6448–6452 (synthesis of zein in Xenopus oocytes).PubMedCrossRefGoogle Scholar
  28. Lending, C. R., and Larkins, B. A., 1989, Plant Cell 1:1011–1023 (location of zein classes in maize protein bodies).PubMedGoogle Scholar
  29. Manteuffel, R., Muntz, K., Puchel, M., and Scholtz, G., 1976, Biochem. Physiol Pflanzen 169:595–605 (DNA, RNA, and protein accumulation in Vicia faba).Google Scholar
  30. Millerd, A., and Spencer, D., 1974, Aust. J. Plant Physiol. 1:331–341 (RNA and nuclei in pea cotyledons).CrossRefGoogle Scholar
  31. Nakamura, K., and Matsuoka, K., 1993, Plant Physiol. 101:1–5 (protein targeting to the vacuole, update).PubMedCrossRefGoogle Scholar
  32. Quatrano, R. S., Marcotte, W. R., and Guiltinan, M., 1993, in: Control of Plant Gene Expression (D. P. S. Verma, ed.), CRC Press, Boca Raton, Fla., pp. 69–90 (ABA regulation of gene expression).Google Scholar
  33. Rerie, W. G., Whitecross, M., and Higgins, T. J. V., 1991, Mol Gen. Genet. 225:148–157 (developmental and environmental regulation of pea legumin genes).PubMedCrossRefGoogle Scholar
  34. Rubin, R., Levanony, H., and Galili, G., 1992, Plant Physiol. 99:718–724 (protein body formation in wheat endosperm).PubMedCrossRefGoogle Scholar
  35. Schmidt, R., 1993, in: Control of Plant Gene Expression (D. P. S. Verma, ed.), CRC Press, Boca Raton, Fla., pp. 337–355 (opaque-2 and zein gene expression).Google Scholar
  36. Sengupta, G., Deluca, V., Bailey, D. S., and Verma, D. P. S., 1981, Plant Mol. Biol. 1:19–34 (posttranscriptional processing in soybean).CrossRefGoogle Scholar
  37. Shirsat, A. H., 1991, in: Developmental Regulation of Plant Gene Expression (D. Grierson, ed.), Blackie, Glasgow and Chapman and Hall, London, pp. 153–181 (gene expression in developing seeds).CrossRefGoogle Scholar
  38. Shotwell, M. A., and Larkins, B. A., 1991, in: Molecular Approaches to Crop Improvement (E. S. Dennis and D. J. Llewellyn, eds.), Springer-Verlag, pp. 34-62 (genetic engineering for seed protein quality).Google Scholar
  39. Weber, E. J., 1980, in: The Resource Potential in Phytochemistry. Recent Advances in Phytochemistiy, Volume 14, Plenum Press, New York., pp. 97–137 (corn mutants).CrossRefGoogle Scholar
  40. Zheng, Y., He, M., Hao, S., and Huang, B., 1992, Ann. Bot. 69:377–383 (ER-derived protein bodies in late developing soybean seeds).Google Scholar

Section 2.3. Nutrition, Phytin

  1. Greenwood, J. S., 1989, in: Recent Advances in the Development and Germination of Seeds (R. B. Taylorson, ed.), Plenum Press, New York, pp. 109–125 (phytin synthesis and deposition).CrossRefGoogle Scholar
  2. Greenwood, J. S., and Bewley, J. D., 1984, Planta 160:113–120 (EM of phytin deposition).CrossRefGoogle Scholar

Section 2.4

  1. Black, M., 1991, in: Abscisic Acid Physiology and Biochemistry (W. J. Davies and H. G. Jones, eds.), Bios Scientific Publishers, Oxford, pp. 99–136 (ABA involvement in seed development and maturation).Google Scholar
  2. Davey, J. E., and Van Staden, J., 1979, Plant Physiol. 63:873–877 (cytokinins in developing lupin seeds).PubMedCrossRefGoogle Scholar
  3. Eeuwens, C. J., and Schwabe, W. W., 1975, J. Exp. Bot. 26:1–14 (growth regulators in developing pea seeds).CrossRefGoogle Scholar
  4. Groot, S. P. C., van Yperen, I. I., and Karssen, C. M., 1991, Physiol. Plant. 81:73–78 (precocious germination, reserve deposition in a tomato mutant).CrossRefGoogle Scholar
  5. King, R. W., 1982, in: The Physiology and Biochemistry of Seed Development, Dormancy and Germination (A. A. Khan, ed.), Elsevier, Amsterdam, pp. 157–181 (abscisic acid in seed development).Google Scholar
  6. Koornneef, M., Hanhart, C. J., Hilhorst, H. W. M., and Karssen, C. M., 1989, Plant Physiol. 90:463–469 (precocious germination, reserve protein accumulation in Arabidopsis mutants).PubMedCrossRefGoogle Scholar
  7. Oishi, M. Y., and Bewley, J. D., 1990, Plant Physiol. 94:592–598 (fluridone-induced precocious germination in maize).PubMedCrossRefGoogle Scholar
  8. Ooms, J. J. J., Leon-Kloosterziel, K. M., Bartels, D., Koornneef, M., and Karssen, C. M., 1993, Plant Physiol. 102:1185–1191 (precocious germination in ABA mutants of Arabidopsis).PubMedGoogle Scholar
  9. Ozga, J. A., Brenner, M. L., and Reinecke, D. M., 1992, Plant Physiol. 100:88–94 (effect of developing pea seeds on pericarp GA).PubMedCrossRefGoogle Scholar
  10. Sponsel, V.M., 1980, in: Gibberellins—Chemistry, Physiology and Use, British Plant Growth Regulator Group Monograph 5 (J. R. Lenton, ed.), Wessex Press, Wantage, U.K., pp. 49–62 (gibberellins in developing pea seeds).Google Scholar
  11. Sponsel, V. M., 1982, J. Plant Growth Regul. 1:147–152 (seed and hormonal control of growth in peas).Google Scholar
  12. Swain, S. M., Reid, J. B., and Ross, J. J., 1993, Planta 191:482–488 (seed abortion in a GA mutant of pea).CrossRefGoogle Scholar
  13. Takahashi, N., Phinney, B. O., and MacMillan, J. (eds.), 1991, Gibberellins, Springer-Verlag, Berlin (articles on GA in seeds).Google Scholar
  14. Ueda, M., Ehman, A., and Bandurski, R. S., 1970, Plant Physiol. 46:715–718 (bound auxin in maize).PubMedCrossRefGoogle Scholar
  15. Van Onckelen, H., Caubergs, R., Horemans, S., and DeGreef, J. A., 1980, J. Exp. Bot. 31:913–920 (ABA in developing bean seeds).CrossRefGoogle Scholar
  16. Xu, N., Coulter, K. M., and Bewley, J. D., 1990, Planta 182:382–390 (ABA sensitivity and effects on precocious germination).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • J. Derek Bewley
    • 1
  • Michael Black
    • 2
  1. 1.Department of BotanyUniversity of GuelphGuelphCanada
  2. 2.Division of Life Sciences, King’s CollegeUniversity of LondonLondonEngland

Personalised recommendations