Abstract

In Chapter 4 we described the theory of self-trapping of excitions in pure and perfect crystals owing to the exciton-lattice interaction. However, most crystals are neither pure nor perfect. Impurities and structural defects/disorders can settle in during crystal growth and act as trapping centers, thus influencing the energy states and transport properties of excitons. Impurities are also often introduced deliberately in order to change the electronic properties of many nonmetallic solids, and the field of doped semiconductors and insulators has advanced tremendously in the last two decades. It is difficult to cover the subject in any single volume, but in order to study the transport of excitation energy in such solids, it is important to study two particular quantities: (1) the line shape, and (2) the Stokes shift in the luminescence spectra.

Keywords

Acoustic Phonon Molecular Crystal Exciton State Energy Transfer Process Free Exciton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Urbach, Phys. Rev. 92, 1324 (1953)ADSCrossRefGoogle Scholar
  2. W. Martiensen, J. Phys. Chem. Sol. 2, 257 (1957)ADSCrossRefGoogle Scholar
  3. Y. Toyozawa, Prog. Theoret. Phys. 20, 53 (1956), 27, 89 (1962)ADSCrossRefGoogle Scholar
  4. E. I. Rashba, Fiz. Tver. Tela. 4, 3301 (1962)Google Scholar
  5. A. S. Davydov and E. N. Myasnikov, Phys. Stat. Sol. 20, 153 (1967)ADSCrossRefGoogle Scholar
  6. H. Sumi and Y. Toyozawa, J. Phys. Soc. Jpn 31, 342, (1971)ADSCrossRefGoogle Scholar
  7. J. Klafter and J. Jortner, Chem. Phys. 26, 421 (1977), J. Chem. Phys. 68, 1513 (1978)ADSCrossRefGoogle Scholar
  8. J. Singh, Phys. Rev. B23, 2011 (1981)ADSGoogle Scholar
  9. D. P. Craig and L. A. Dissado, Chem. Phys. 14, 1976 (1976).CrossRefGoogle Scholar
  10. 2.
    H. Sher and M. Lax, Phys. Rev. B7, 4491 (1973)ADSGoogle Scholar
  11. A. M. Stoneham, Theory of Defects in Solids, Clarendon Press, Oxford (1975)Google Scholar
  12. A. Blumen and R. Silbey, J. Chem. Phys. 69, 3589 (1978)ADSCrossRefGoogle Scholar
  13. J. Singh and A. Thilagam, Chem. Phys. Lett. 134, 600 (1987)ADSCrossRefGoogle Scholar
  14. R. Chert and H. Baessler, Chem. Phys. Lett. 118, 235 (1985)ADSCrossRefGoogle Scholar
  15. J. Klafter and R. Silbey, J. Chem. Phys. 72, 843 (1980), Phys. Rev. Lett. 44, 55 (1980)ADSCrossRefGoogle Scholar
  16. A. Blumen, J. Klafter, B. S. White, and G. Zumofen, Phys. Rev. Lett. 53, 1301 (1984).ADSCrossRefGoogle Scholar
  17. 3.
    A. S. Ioselevich and E. I. Rashba, JETP Lett. 40, 1153 (1984), Sov. Phys. JETP 61, 1110 (1985).ADSGoogle Scholar
  18. 4.
    E. I. Rashba, in: Excitons (M. D. Sturge and E. I. Rashba, eds.) North-Holland, Amsterdam (1982), p. 544.Google Scholar
  19. 5.
    A. Matsui, K. Mizuno, N. Tamai, and I. Yamazaki, Chem. Phys. 113, 111 (1987).CrossRefGoogle Scholar
  20. 6.
    G. Zimmerer, in: Excited State Spectroscopy in Solids, Proceedings of the International School of Physics (U.M. Grassano and N. Terzi, eds.), North-Holland, Amsterdam (1987), p. 37.Google Scholar
  21. 7.
    I. YA. Fugol, Adv. Phys. 27, 1 (1978).ADSCrossRefGoogle Scholar
  22. 8.
    N. F. Mott and A. M. Stoneham, J. Phys. C10, 3391 (1977).ADSGoogle Scholar
  23. 9.
    D. Varding, J. Becker, L. Frankenstein, B. Peters, M. Runne, A. Schröder, and G. Zimmerer, Low.Temp. Phys. (in Russian) 19, 600 (1993).Google Scholar
  24. 10.
    C. R. Gochanaur, H. C. Anderson, and M. D. Fayer, J. Chem. Phys. 70, 4254 (1978).ADSCrossRefGoogle Scholar
  25. 11.
    D. P. Craig, L. A. Dissado, and S. H. Walmsley, Chem. Phys. Lett. 44, 419 (1976).ADSCrossRefGoogle Scholar
  26. 12.
    J. Singh, Phys. Rev. B33, 2602 (1986).ADSGoogle Scholar
  27. 13.
    K. P. Leletov, E. I. Rashba, and E. F. Sheka, Pisma Zh. Eksp. Teor. Fiz. 29, 184 (1979) [JETP Lett. 29, 165 (1979)].Google Scholar
  28. 14.
    J. Singh and A. Thilagam, J. Lumin. 40/41, 457 (1988).CrossRefGoogle Scholar
  29. 15.
    J. Singh and A. Thilagam, J. Lumin. 38, 317 (1987).CrossRefGoogle Scholar
  30. 16.
    J. Barrau, M. Heckman, J. Collet, and M. Brousseau, J. Phys. Chem. Sol. 34, 1567 (1973).ADSCrossRefGoogle Scholar
  31. 17.
    A. A. Lipnik, Sov. Phys. Sol. St. 1, 661 (1960), 2, 1835 (1961), 3, 1683 (1962).Google Scholar
  32. 18.
    J. Barrau, M. Heckman, and M. Brousseau, J. Phys. Chem. Sol. 34, 381 (1973).ADSCrossRefGoogle Scholar
  33. 19.
    M. Lax, Phys. Rev. 119, 1502 (1960).ADSCrossRefGoogle Scholar
  34. 20.
    A. A. Lipnik, Sov. Phys. Tech. Phys. 2, 2575 (1957).Google Scholar
  35. 21.
    P. J. Dean, R. A. Faulkner, S. Kimura, and M. Ilegems, Phys. Rev. B4, 1926 (1971)ADSGoogle Scholar
  36. M. Welkowsky and R. Braunstein, Phys. Rev. B5, 497 (1972).ADSGoogle Scholar
  37. 22.
    H. C. Wolf, Advan. Atom. Mol. Phys. 3, 319 (1967)Google Scholar
  38. P. Avakian and R.E. Merrifield, Mol. Cryst. Liq. Cryst. 5, 37 (1968)CrossRefGoogle Scholar
  39. G. Durocher and D. F. Williams, J. Chem. Phys. 51, 1675 (1969)ADSCrossRefGoogle Scholar
  40. M. Grover and R. Silbey, J. Chem. Phys. 54, 4843 (1971).ADSCrossRefGoogle Scholar
  41. 23.
    R. W. Munn, J. Chem. Phys. 58, 3230 (1973).ADSCrossRefGoogle Scholar
  42. 24.
    R. Voltz and P. Kottis, in: Localisation and delocalisation in Quantum Chemistry, (O. Chalvet, R. Daudel, S. Diner and J. P. Malrieu, eds.) Vol. II, Part III, Reidel, Dordrecht (1976); ibid., V. Ern and M. Schott; ibid., P. Reineker and H. Haken; ibid., R. Voltz.Google Scholar
  43. 25.
    W. L. Greer, J. Chem. Phys. 60, 744 (1974); 65, 3510 (1976).ADSCrossRefGoogle Scholar
  44. 26.
    R. Silbey, Ann. Rev. Phys. Chem. 27, 203 (1976).ADSCrossRefGoogle Scholar
  45. 27.
    I. Y. Fugol, Adv. Phys. 27, 1 (1978).ADSCrossRefGoogle Scholar
  46. 28.
    O. H. LeBlanc Jr., J. Chem. Phys. 35, 1275 (1961)ADSCrossRefGoogle Scholar
  47. J. I. Katz, S. A. Rice, S. Choi, and J. Jortner, J. Chem. Phys. 39, 1683 (1963)ADSCrossRefGoogle Scholar
  48. L. Friedman, Phys. Rev. A133, 1668 (1964)ADSCrossRefGoogle Scholar
  49. R. Silbey, J. Jortner, and S. A. Rice, J. Chem. Phys. 42, 1515 (1965).ADSCrossRefGoogle Scholar
  50. 29.
    P. T. Landsberg, in: Handbook on Semiconductors Vol. I, Band Theory and Transport Properties (W. Paul, ed.) North-Holland, Amsterdam (1978).Google Scholar
  51. 30.
    F. Culik, Czech. J. Phys. B16, 194 (1966).ADSCrossRefGoogle Scholar
  52. 31.
    P. I. Khadzhi, Sov. Phys. Semicond. 2, 190 (1968).Google Scholar
  53. 32.
    S. Choi and S. A. Rice, J. Chem. Phys. 38, 366 (1963).ADSCrossRefGoogle Scholar
  54. 33.
    J. Singh, J. Phys. C: Sol. St. Phys. 11, 3245 (1980).Google Scholar
  55. 34.
    D. C. Northrop and P. Simpson, Proc. Roy. Soc. (London) A244, 377 (1958)ADSGoogle Scholar
  56. M. Silver, D. Olness, Swicord, and R. C. Jarnagin, Phys. Rev. Lett. 10, 12 (1963).ADSCrossRefGoogle Scholar
  57. 35.
    J. B. Webb and D. F. Williams, J. Phys. C: Sol. St. Phys. 11, 3245 (1978).ADSCrossRefGoogle Scholar
  58. 36.
    O. H. LeBlanc Jr., in: Physics and Chemistry of the Organic Solid State, (D. Fox, M. M. Labes and A. Wessberger, eds.) Vol. III, Ch. 3, Interscience, New York (1967).Google Scholar
  59. 37.
    R. G. Kepler, J. Caris, P. Avakian, and E. Abramson, Phys. Rev. Lett. 10, 400 (1963).ADSCrossRefGoogle Scholar
  60. 38.
    J. L. Hall, D. A. Jennings, and R. M. McClintock, Phys. Rev. Lett. 11, 364 (1963).ADSCrossRefGoogle Scholar
  61. 39.
    C. E. Swenberg and W. T. Stacy, Chem. Phys. Lett. 2, 327 (1968).ADSCrossRefGoogle Scholar
  62. 40.
    N. Geacintov, M. Pope, and F. Vogel, Phys. Rev. Lett. 22, 593 (1969).ADSCrossRefGoogle Scholar
  63. 41.
    R. E. Merrifield, P. Avakian, and R. P. Groff, Chem. Phys. Lett. 3, 155 (1969).ADSCrossRefGoogle Scholar
  64. 42.
    R. P. Groff, P. Avakian, and R. E. Merrifield, Phys. Rev. B1, 815 (1970).ADSGoogle Scholar
  65. 43.
    Y. T. Omkiewicz, R. P. Groff, and P. Avakian, J. Chem. Phys. 54, 4504 (1971).ADSCrossRefGoogle Scholar
  66. 44.
    J. Jortner, S. A. Rice, J. L. Katz, and S. Choi, J. Chem. Phys. 42, 309 (1965).ADSCrossRefGoogle Scholar
  67. 45.
    C. E. Swenberg, J. Chem. Phys. 51, 1753 (1969).ADSCrossRefGoogle Scholar
  68. 46.
    M. Trlifaj, Czech. J. Phys. B22, 832 (1972).ADSCrossRefGoogle Scholar
  69. 47.
    J. Singh, J. Phys. Chem. Sol. 30, 1207 (1978).ADSCrossRefGoogle Scholar
  70. 48.
    G. Klein, R. Voltz, and M. Schott, Chem. Phys. Lett. 19, 391(1973)ADSCrossRefGoogle Scholar
  71. (b).
    W. M. Moller and M. Pope, J. Chem. Phys. 59, 2760 (1973)ADSCrossRefGoogle Scholar
  72. C. E. Swenberg, M. A. Ratner, and N. E. Geacintov J. Chem. Phys. 60, 2152 (1974).ADSCrossRefGoogle Scholar
  73. 49.
    G. Vaubel and H. Baessler, Mol. Cryst. 15, 15 (1971)CrossRefGoogle Scholar
  74. G. Klein, R. Voltz, and M. Schott, Chem. Phys. Lett. 16, 340 (1972).ADSCrossRefGoogle Scholar
  75. 50.
    R. Engelman and J. Jortner, Mol. Phys. 18, 145 (1970).ADSCrossRefGoogle Scholar
  76. 51.
    J. B. Birks, Photophysics of Aromatic Molecules, Wiley, New York (1967).Google Scholar
  77. 52.
    R. R. Alfano, S. L. Shapiro, and M. Pope, Opt. Comm. 9, 388 (1973).ADSCrossRefGoogle Scholar
  78. 53.
    M. Pope and J. Burgos, Mol. Cryst. 1, 395 (1966).CrossRefGoogle Scholar
  79. 54.
    P. Avakian and R. E. Merrifield, Mol. Cryst. 5, 37 (1968).CrossRefGoogle Scholar
  80. 55.
    S. Singh, W. J. Jones, W. Siebrand, B. P. Stoicheff, and W. G. Schneider, J. Chem. Phys. 42, 330 (1965).ADSCrossRefGoogle Scholar
  81. 56.
    T. A. King and H. G. Siefert, in: The Triplet State (A. B. Zahlan ed.), Proceedings of an International Conference held at the American University, Beirut, Lebanon, February 14-19, 1967) (Cambridge University Press, Cambridge (1967), p. 329.Google Scholar
  82. 57.
    P. Avakian, E. Abramson, R. G. Kepler, and J. C. Carris, J. Chem. Phys. 39, 1127(1963).ADSCrossRefGoogle Scholar
  83. 58.
    W. Helfrich and W. G. SchneiderJr., J. Chem. Phys. 44, 2902 (1966).ADSCrossRefGoogle Scholar
  84. 59.
    N. Hirota and C. A. Hutchinson, Jr., J. Chem. Phys. 42, 2869 (1965).ADSCrossRefGoogle Scholar
  85. 60.
    M. Pope, J. Burgos, and N. Wotherspoon, Chem. Phys. Lett. 12, 140 (1971).ADSCrossRefGoogle Scholar
  86. 61.
    N. Wakayama and D. F. Williams, J. Chem. Phys. 57, 1770 (1972).ADSCrossRefGoogle Scholar
  87. 62.
    L. Peter and G. Vaubel, Phys. Stat. Sol(b) 48, 587 (1971).ADSCrossRefGoogle Scholar
  88. 63.
    A. Many, J. Levingson, and I. Teuchner, Mol. Cryst. Liq. Cryst. 5, 121 (1968).Google Scholar
  89. 64.
    D. Haarer and G. Castro, Chem. Phys. Lett. 12, 277 (1971).ADSCrossRefGoogle Scholar
  90. 65.
    P. Schlotter and H. Baessler, Chem. Phys. Lett. 24, 450 (1974).ADSCrossRefGoogle Scholar
  91. 66.
    V. M. Agranovich and A. A. Zakhidov, Chem. Phys. Lett. 68, 86 (1979).ADSCrossRefGoogle Scholar
  92. 67.
    F. I. Dalidchik and V. Z. Slonim, JETP Lett. 31, 112 (1980).ADSGoogle Scholar
  93. 68.
    J. Singh, Phys. Stat. Sol(b) 103, 423 (1981).ADSCrossRefGoogle Scholar
  94. 69.
    J. Singh, J. Chem. Phys. 75, 4603 (1981).ADSCrossRefGoogle Scholar
  95. 70.
    R. M. Hochstrasser, Accts. Chem. Res. 6, 263 (1973).CrossRefGoogle Scholar
  96. 71.
    J. Singh and P. T. Landsberg, J. Phys. C: Sol St. Phys. 9, 3627 (1976).ADSCrossRefGoogle Scholar
  97. 72.
    M. Trlifaj, Czech. J. Phys. B15, 780 (1965).ADSCrossRefGoogle Scholar
  98. 73.
    M. Trlifaj, Czech. J. Phys. B14, 227 (1964).ADSCrossRefGoogle Scholar
  99. 74.
    C. Richard and M. Dugue, Phys. Stat. Sol(b) 50, 263 (1972).ADSCrossRefGoogle Scholar
  100. 75.
    T. Harada and K. Morigaki, J. Phys. Soc. Jpn 32, 172 (1972).ADSCrossRefGoogle Scholar
  101. 76.
    T. Kobayashi and S. Nagakura, Mol. Phys. 24, 695 (1972).ADSCrossRefGoogle Scholar
  102. 77.
    Z. Khas, Czech. J. Phys. B15, 568 (1965).ADSCrossRefGoogle Scholar
  103. 78.
    R. Fuchs, Phys. Rev. 111, 387 (1958).ADSCrossRefGoogle Scholar
  104. 79.
    J. Singh and H. Baessler, Phys. Stat. Sol.(b) 62, 147 (1974).ADSCrossRefGoogle Scholar
  105. 80.
    H. Killesreiter and H. Baessler, Phys. Stat. Sol.(b) 51, 657 (1972)ADSCrossRefGoogle Scholar
  106. Chem. Phys. Lett. 11, 411 (1971).Google Scholar
  107. 81.
    S. Choi, Phys. Rev. Lett. 19, 358 (1968).ADSCrossRefGoogle Scholar
  108. 82.
    A. Bergman, M. Levine, and J. Jortner, Phys. Rev. Lett. 18, 593 (1967).ADSCrossRefGoogle Scholar
  109. 83.
    J. Jortner, Phys. Rev. Lett. 20, 244 (1968).ADSCrossRefGoogle Scholar
  110. 84.
    K. Lochner, H. Baessler, L. Sebastian, G. Weiser, G. Wagner, and V. Enkelmann, Chem. Phys. Lett. 78, 366 (1981).ADSCrossRefGoogle Scholar
  111. 85.
    J. J. Hopfield, Phys. Rev. 112, 1555 (1958).ADSMATHCrossRefGoogle Scholar
  112. 86.
    S. I. Pekar, Sov. Phys. JETP 34, 813 (1958).MathSciNetGoogle Scholar
  113. 87.
    B. Fischer and J. Lagois, in: Excitons, (K. Cho, ed.) Topics in Current Physics, Vol. 14 (Springer-Verlag, Heidelberg (1979) p. 183Google Scholar
  114. 88.
    E. Burstein and F. De Martini (eds.), Polaritons, Proceedings of the First Taormina Research Conference on the Structure of Matter, Pergamon, New York (1974).Google Scholar
  115. 89.
    H. Haken, Quantum Field Theory of Solids, North-Holland, Amsterdam (1976).Google Scholar
  116. 90.
    L. Esaki and R. Tsu, IBM J. Res. Rev. 14, 61 (1970).CrossRefGoogle Scholar
  117. 91.
    A. C. Gossard, Institute of Physics Conference Series No 69, ESSDERC/ SSSDT, Canterbury (1983), p. 1.Google Scholar
  118. 92.
    G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, (1988).Google Scholar
  119. 93.
    R. Dingle, Device and Circuit Applications of III-IV Semiconductor Super-lattices and Modulation Doping, Academic, New York (1985).Google Scholar
  120. 94.
    L. Esaki, J. de Phys. C48, 5 (1987).Google Scholar
  121. 95.
    M. Jaros, Physics and Applications of Semiconductor Microstructures, Oxford University Press, Oxford (1989).Google Scholar
  122. 96.
    T. Takagahara, Phys. Rev. B31, 6552 (1985).ADSGoogle Scholar
  123. 97.
    A. Thilagam and J. Singh, J. Lumin. 55, 11 (1993); Phys. Rev. B48, 4636 (1993).Google Scholar
  124. 98.
    A. Thilagam, Ph.D. Thesis, Dynamics of Excitons in Semiconductor Heterostructures, Physics, Northern Territory University, 1993.Google Scholar
  125. 99.
    W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, C. V. Shank, A. C. Gossard, and W. Wiegman, Phys. Rev. Lett. 54, 1306 (1985).ADSCrossRefGoogle Scholar
  126. 100.
    A. Thilagam and J. Singh, Phys. Rev. B49, 13583 (1994).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Jai Singh
    • 1
  1. 1.Northern Territory UniversityDarwinAustralia

Personalised recommendations