It was first suggested by Landau(1) that an electron moving in a crystal can get trapped by its interaction with the lattice. His original work was done with the idea that the probability density of finding an electron interacting with phonons will be nonzero around a certain centered polarization, and that it will vanish beyond a certain finite length from the center. In other words, the electron becomes localized. Subsequently Rashba(2) and Toyozawa(3) advanced the theory of self-trapping of electrons and excitons in crystalline solids significantly.


Luminescence Spectrum Acoustic Phonon Exciton State Free Exciton Weak Coupling Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Landau, Phys. Zs. Sowjet., Vol. 3 (1993), p. 664.Google Scholar
  2. 2.
    E. I. Rashba, in: Excitons (E. I. Rashba and M. D. Sturge, eds.), North-Holland, Amsterdam (1982), p. 540.Google Scholar
  3. 3.
    Y. Toyozawa, Prog. Theor. Phys. 26, 29 (1959); Self-Trapping of an Electron by the Acoustic Mode of Lattice Vibration, in: Polarons and Excitons (C. G. Kuper and G. D. Whitfield, eds.), Oliver and Boyd, Edinburgh (1963).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    P. T. Williams and K. S. Song, J. Phys. Chem. Sol. 51, 679 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    J. M. Denver, A. M. Bonnot, F. Coleti, and J. Hanus, Sol. St. Commun. 14, 989 (1974).ADSCrossRefGoogle Scholar
  6. 6.
    A. Matsui and H. Nishimura, J. Phys. Soc. Jpn. 49, 657 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    G. Zimmerer, in: Excited State Spectroscopy in Solids, Proceedings of the International School of Physics (U. M. Grassano and N. Terzi, eds.), North-Holland, Amsterdam (1987), p. 37.Google Scholar
  8. 8.
    K. Tanimura and N. Itoh, Phys. Rev. Lett. 60, 2753 (1988); Phys. Rev. Lett. 64, 1429 (1990).ADSCrossRefGoogle Scholar
  9. 9.
    K. Mizuno, A. Matsui, and G. J. Sloan, J. Phys. Soc. Jpn. 53, 2799 (1984).ADSCrossRefGoogle Scholar
  10. 10.
    K. Mizuno and A. Matsui, J. Phys. Soc. Jpn. 52, 3260 (1982).ADSCrossRefGoogle Scholar
  11. 11.
    M. Georgiev and J. Singh, Chem. Phys. 176, 47 (1993).CrossRefGoogle Scholar
  12. 12.
    F. Urbach, Phys. Rev. 92, 1324 (1953).ADSCrossRefGoogle Scholar
  13. 13.
    I. Ya. Fugol, Adv. Phys. 27, 1 (1978).ADSCrossRefGoogle Scholar
  14. 14.
    M. Schreiber and Y. Toyozawa, J. Phys. Soc. Jpn. 51, 1544 (1982).ADSCrossRefGoogle Scholar
  15. 15.
    M. N. Kabler, in: Point Defects in Solids (J. H. Crawford, Jr., and L. M. Slifkin, eds.), Vol. 1, Plenum, New York (1972).Google Scholar
  16. 16.
    A. M. Stoneham, J. Phys. C7, 2476 (1974).ADSGoogle Scholar
  17. 17.
    N. Itoh, A. M. Stoneham, and A. H. Haker, J. Phys. C10, 4197 (1977).ADSGoogle Scholar
  18. 18.
    D. P. Craig and J. Singh, Chem. Phys. Lett. 82, 405 (1981).ADSCrossRefGoogle Scholar
  19. 19.
    J. Singh and A. Matsui, Phys. Rev. B36, 6094 (1981).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Jai Singh
    • 1
  1. 1.Northern Territory UniversityDarwinAustralia

Personalised recommendations