Phospholipase Action in the Generation of Modified LDL

  • Sampath Parthasarathy
  • Joellen Barnett
Part of the NATO ASI Series book series (NSSA, volume 266)


A plethora of recent evidence suggests that some kind of oxidative process is involved in atherogenesis and that the oxidation of low density lipoprotein (LDL) may play a significant pathogenic role in atherosclerosis [1–3]. Based on the recommendations of the National Heart, Lung, and Blood Institute’s expert panel [4], clinical trials to test the validity of the hypothesis in man are being undertaken using combinations of natural antioxidants.


Platelet Activate Factor Rose Bengal Platelet Activate Factor Acetylhydrolase Watanabe Heritable Hyperlipidemic Rabbit Platelet Activate Factor Acetyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Steinberg D, Parthasarathy S, Carew, TE, Khoo, JC, Witztum JL. Beyond Cholesterol. Modifications of low density lipoprotein that incresae its atherogenicity. N. Engl. J. Med. 320: 915–924 (1989).PubMedCrossRefGoogle Scholar
  2. 2.
    Parthasarathy S, Steinberg D, Witztum,J.L. Annu. Rev. Med. 43: 219 225 (1992).Google Scholar
  3. 3.
    Parthasarathy, S and Rankin, S.M. Role of oxidized low density lipoprotein in atherogenesis. Progr. Lipid Res. 31: 127–143 (1992).CrossRefGoogle Scholar
  4. 4.
    Steinberg D, Workshop Participants: Antioxidants in the prevention of human atherosclerosis. Summary of the proceedings of a National Heart, Lung and Blood Institute workshop. Circulation 85: 2337–2344 (1992).PubMedCrossRefGoogle Scholar
  5. 5.
    Carew TE, Schwenke DC, Steinberg D: Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation and slow the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit. Proc. Natl. Acad. Sci. USA 84: 7725–7729 (1987).PubMedCrossRefGoogle Scholar
  6. 6.
    Kita T, Nagano Y, Yokode M, Ishii K, Kume N, Ooshima A, Yoshida H, Kawai. Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc. Natl. Acad. Sci. USA 84: 5928–5931 (1987).PubMedCrossRefGoogle Scholar
  7. 7.
    Mao, S.J.T., Yates, M.T., Parker, R.A., Chi, E.M., and Jackson, R.L. Attenuation of atherosclerosis in a modified strain if hypercholesterolemic watanabe rabbit with use of a probucol analog (MDL 29, 311) that does not lower serum cholesterol. Arterios. Thromb. 11: 1266–1275 (1991).CrossRefGoogle Scholar
  8. 8.
    Björkhem, I., Henriksson-Freyschuss, A., Breuer, O., Diczfalusy, U., Berglund, L., and Henriksson, P. The antioxidant butylated hydroxytoluene protects against atherosclerosisArterios. Thromb. 11: 15–22 (1991).Google Scholar
  9. 9.
    Sparrow, C.P., Doebber, T.W., Olszwski, J., Wu, M.S., Ventre, J., Stevens, K.A. and Chao, Y. Low density lipoprotein is protected from oxidation and the progression of atherosclerosis is slowed in cholesterol-fed rabbit by the antioxidant N,N’diphenyphenylenediamine. J. Clin. Invest. 89: 1885–1891 (1992).PubMedCrossRefGoogle Scholar
  10. 10.
    Verlangieri, A.J. and Bush, M.J. Effects of d-alpha-tocopherol supplementation on experimentally induced primate atherosclerosis. Am. Coll. Nutr. 11: 131–138 (1992).Google Scholar
  11. 11.
    Daugherty, A., Zweifel, B.S. and Schenfeld, G. The effects of probucol on the progression of atherosclerosis in mature Watanabe heritable hyperlipidaemic rabbits. Brit. J. Pharmacol. 103: 1013–1018 (1989).CrossRefGoogle Scholar
  12. 12.
    Gey, K.F. and Puska, P. Plasma vitamin E and A inversely related to mortality from ischemic heart disease in cross-cultural epidemiology. Ann. Ny Acad. Sci. 570, 254–282 (1989)CrossRefGoogle Scholar
  13. 13.
    Esterbauer, H., Schaur, R.J. and Zollner, H. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free. Radic. Biol. Med. 11: 81–128 (1992).CrossRefGoogle Scholar
  14. 14.
    Hansson, G.K. Seifert-P-S. Olsson-G. Bondjers-G. Immunohistochemical detection of macrophages and T lymphocytes in atherosclerotic lesion of cholesterol-fed rabbits. Arterioscler-Thromb. 11: 745–750 (1991).PubMedCrossRefGoogle Scholar
  15. 15.
    Gerrity, R.G., Naito, H.K., Richardson, M. and Schwartz, C.J. Dietary induced atherogenesis in swine. Am. J. Pathol. 95: 775–792 (1979).PubMedGoogle Scholar
  16. 16.
    Steinbrecher.U. P, Witztum. J. L, Parthasarathy. S and Steinberg D. Decrease in reactive amino groups during oxidation or endothelial cell modification of LDL. Correlation with changes in receptor-mediated catabolism. Arteriosclerosis 7: 135–143 (1987).PubMedCrossRefGoogle Scholar
  17. 17.
    Steinbrecher, U.P. Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J. Biol. Chem. 262: 3603–3608 (1987).Google Scholar
  18. 18.
    Steinbrecher U.P, Parthasarathy S, Leake D.S, Witztum J.L and Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low densityl lipoprotein phospholipids. Proc. Natl. Acad. Sci. USA 81: 3883–3887 (1984).PubMedCrossRefGoogle Scholar
  19. 19.
    Parthasarathy, S., Steinbrecher, U.P., Barnett, J., Witztum, J.L. and Steinberg, D. Essential role of phospholipase A2 in endothelial cell-induced modification of low density lipoprotein. Proc. Natl. acad. Sci. USA. 82, 3000–3004 (1985).PubMedCrossRefGoogle Scholar
  20. 20.
    Parthasarathy, S. and Barnett, J. Phospholipase A2 activity of low density lipoprotein: Evidence for an intrinsic phospholipase A2 activity of apoprotein B-100. Proc. Natl. Acad. Sci. USA. 87, 9741–9745 (1990).PubMedCrossRefGoogle Scholar
  21. 21.
    Stafforini, D.M., McIntyre, T.M., Carter, M. E. and Prescott, S.M. Human plasma platelet-activating factor hydrolase. Association with lipoprotein particles and role in the degradation of platelet activating factor. J. Biol. Chem. 262, 4215–4222 (1987).PubMedGoogle Scholar
  22. 22.
    Stremler, K.E., Stafforini, D.M., Prescott, S.M., Zimmerman, G.A and McIntyre, T.M. An oxidized derivative of phosphatidylcholine is a substrate for the platelet activating factor acetylhydrolase from human plasma. J. Biol. Chem. 264, 5331–5334 (1989).PubMedGoogle Scholar
  23. 23.
    Steinbrecher, U.P. and Pritchard, H.P. Hydrolysis of phosphatidylcholine during LDL oxidation is mediated by platelet activating factor acetyl hydrolase. J. Lipid Res. 30, 305–315 (1989).PubMedGoogle Scholar
  24. 24.
    Stafforini, D.M., Carter, M.E., Zimmerman, G.A., McIntyre, T.M. and Prescott, S.M. Lipoproteins alter the catalytic behaviour of the platelet activating factor acetylhydrolase in human plasma. Proc. Natl. Acad. Sci. USA 86, 2393–2397 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Sampath Parthasarathy
    • 1
  • Joellen Barnett
    • 2
  1. 1.Department of Gynecology and ObstetricsEmory UniversityAtlantaUSA
  2. 2.Department of MedicineUniversity of CaliforniaSan Diego La JollaUSA

Personalised recommendations