Advertisement

Study of Some Mechanisms that may Contribute to the Presence of High Levels of Phospholipase A2 Activity in Plasma of Patients with Septicemia

  • Miguel Angel Gijón
  • Carolina García
  • César Pérez
  • Fernando López-Díez
  • Mariano Sánchez-Crespo
Chapter
Part of the NATO ASI Series book series (NSSA, volume 266)

Abstract

Phospholipase A2 (EC 3.1.1.4) is a family of phosphatide 2-acylhydrolases that play an important role in the metabolism of phospholipids and membrane homeostasis [1–4]. These functions of phospholipase A2 seem relevant to the pathogenesis of various clinical conditions, since the presence of high concentrations of phospholipase A2 activity in plasma and inflammatory exudates of patients suffering from inflammatory arthritis, peritonitis and septic shock has been reported. Administration of exogenous extracellular phospholipase into experimental animals causes inflammatory hyperemia [5], and a correlation of serum levels of phospholipase A2 with the magnitude of hypotension has been shown in endotoxin shock [6,7]. The possible pathogenetic role of soluble phospholipase A2 in endotoxin shock in connection to the cytokine network has been emphasized by several reports showing the secretion of type II phospholipase A2 by rat mesangial cells [8,9], liver cells [1011] and human synovial cells [12,13] in response to tumor necrosis factor and interleukin lß. A recent report from this laboratory has shown the presence of high amounts of PAF associated with the platelets of patients with septicemia [14] and this raises the question as to whether this finding might be related to the secretion of phospholipase A2 activity and an ensuing formation of lipid mediators.

Keywords

Sepsis Patient Septic Shock Patient Endotoxin Shock Plasma Enzyme Zymosan Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van den Bosch H. Biochim Biophys Acta 604, 1980: 191–246.PubMedGoogle Scholar
  2. 2.
    Bereziat G, Etienne J, Kokkinidis M, Olivier JL, Pernas P. J Lipid Mediators 2, 1990: 159–172.Google Scholar
  3. 3.
    Irvine RF. Biochem J 101, 1982: 53–61.Google Scholar
  4. 4.
    Snyder F. Med Res Rev 5, 1985: 107–140.PubMedCrossRefGoogle Scholar
  5. 5.
    Vadas P, Wasi S, Movat H, Hay JH. Nature 293, 1981: 583–585.PubMedCrossRefGoogle Scholar
  6. 6.
    Vadas P. J Lab Clin Med. 104, 1984: 873–881.PubMedGoogle Scholar
  7. 7.
    Vadas P, Pruzanski W, Stefanski E, Sternby B, Mustard R, Bohnen J, Fraser I, Farewell V, Bombardier C. Crit Care Med 16, 1988: 1–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Schalkwijk C, Pfeilschifter J, Marki F, van den Bosch H. Biochem Biophys Res Commun 174, 1991: 268–275.PubMedCrossRefGoogle Scholar
  9. 9.
    Pfeilschifter J, Leighton J, Pignat W, Marki F, Vosbeck K. Biochem J 273, 1991: 199–204.PubMedGoogle Scholar
  10. 10.
    Inada M, Tojo H, Kawata S, Seiichiro T, Okamoto M. Biochem Biophys Res Commun 174, 1991: 1077–1083.PubMedCrossRefGoogle Scholar
  11. 11.
    Crowl, R.M., T.J. Stoller, R.R. Conroy, and C.R. Stoner. 1991. J Biol Chem 266, 1991: 2647–2651.PubMedGoogle Scholar
  12. 12.
    Chang, J, Gilman, SC, Lewis AJ. J. Immunol. 136, 1986: 1283–1287.PubMedGoogle Scholar
  13. 13.
    Godfrey RW, Johnson WJ, Hoffstein ST. Biochem Biophys Res Commun 142, 1987: 235–241.PubMedCrossRefGoogle Scholar
  14. 14.
    Lopez Diez F, Nieto ML, Fernandez-Gallardo S, Gijón MA, Sanchez Crespo M. J Clin Invest 83, 1989: 1733–1740.PubMedCrossRefGoogle Scholar
  15. 15.
    Heath MF, Tighe D, Moss R, Bennet D. Crit Care Med 18, 1990: 766–767.PubMedCrossRefGoogle Scholar
  16. 16.
    Wright GW, Ooi CE, Weiss J, Eisbach P. J Biol Chem 265, 1990: 6675–6681.PubMedGoogle Scholar
  17. 17.
    Parthasarathy S, Barnett J. Proc Natl Acad Sci USA 87, 1990: 9741–9745.PubMedCrossRefGoogle Scholar
  18. 18.
    Bone RC, Fisher CJ, Clemmer, TP, Slotman GJ, Metz CA, Balk RA. Grit Care Med 17, 1989: 389–393.CrossRefGoogle Scholar
  19. 19.
    Knauss WA, Draper EA, Wagner DP, Zimmerman JE. Crit Care Med. 13, 1985: 818–819.CrossRefGoogle Scholar
  20. 20.
    Bradford M. Anal Biochem 72, 1976: 248–254.PubMedCrossRefGoogle Scholar
  21. 21.
    Eisbach P, Weiss J, Franson R, Beckerdite-Quagliata S, Schneider A, Harris L. J Biol Chem 254, 1979: 11000–11009.Google Scholar
  22. 22.
    Puijk WC, Verheij HM, De Haas GH. Biochim Biophys Acta 492, 1977: 254–259.PubMedCrossRefGoogle Scholar
  23. 23.
    Verheij HM, Westerman J, Sternby B, De Haas GH. Biochim Biophys Acta 747, 1983: 93–99.PubMedCrossRefGoogle Scholar
  24. 24.
    Kramer RM, Checani GC, Deykin A, Pritzker CR, Deykin D. Biochim Biophys Acta 878, 1986: 394–403.PubMedCrossRefGoogle Scholar
  25. 25.
    Kramer RM, Hession C, Johansen B, Hayes G, McGray P, Pingchang Chow E, Tizard R, Blake Pepinsky R. J Biol Chem 264, 1989: 5568–5575.Google Scholar
  26. 26.
    Lyons-Giordano B, Davis GL, Galbraith W, Pratta MA, Arner EC. Biochem Biophys Res Commun 164, 1989: 488–495.PubMedCrossRefGoogle Scholar
  27. 27.
    Lai C-Y, Wada K. Biochem Biophys Res Commun 157, 1988: 488–493.PubMedCrossRefGoogle Scholar
  28. 28.
    Kanda A, Ono T, Yoshida N, Tojo H, Okamoto M. Biochem Biophys Res Commun 163, 1989: 42–48.PubMedCrossRefGoogle Scholar
  29. 29.
    Seilhamer JJ, Pruzanski W, Vadas P, Plant S, Miller JA, Kloss JY, Johnson LK. J Biol Chem 264, 1989: 5335–5338.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Miguel Angel Gijón
    • 1
  • Carolina García
    • 1
  • César Pérez
    • 2
  • Fernando López-Díez
    • 3
  • Mariano Sánchez-Crespo
    • 1
  1. 1.Departamento de Bioquímica y FisiologiaFacultad de MedicinaValladolidSpain
  2. 2.Fundación Jiménez DíazMadridSpain
  3. 3.Hospital de la PrincesaMadridSpain

Personalised recommendations