LCAT: From Structure to Clinical Significance

  • M. F. Dumon
  • A. Berard
  • M. Clerc
Part of the NATO ASI Series book series (NSSA, volume 266)


Lecithin: cholesterol acyltransferase (LCAT; EC is a plasma glycoprotein enzyme of the serine esterase type which is synthesized and secreted by hepatocytes and has a key role in the metabolism of cholesterol especially in reverse cholesterol transport (Efflux) from the peripheral tissues to the liver [1].


Cholesteryl Ester Corneal Opacity Cholesterol Acyltransferase Cholesterol Ester Transfer Protein Lecithin Cholesterol Acyl Transferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Glomset J.A. and Norum K.R. The metabolic role of lecithin: cholesterol acyltransferase. Adv. Lipid Res., 2, 1973, 1–65.Google Scholar
  2. [2]
    Hill J.S., Karmin O., Wang X., Paranjape S., Dimitrijevich D., Lacko A.G. and Pritchard P.H. Expression and characterization of recombinant lecithin: cholesterol acyl transferase. J. Lipid Res., 34, 1993, 1245–1251.PubMedGoogle Scholar
  3. [3]
    Fielding C.J. and Collet X. Phopholipase activity of lecithin: cholesterol acyltransferase. in: Methods in enzymology, Acad. Press., 197, 1991, 426–433.Google Scholar
  4. [4]
    Subbaiah P.V., Liu M., Bolan P.J. and Paltauf F. Altered positional specificity of human plasma lecithin: cholesterol acyltransferase in the presence of sn-2 arachidonoryl phosphatidyl cholines. Mechanism of formation of saturated cholesteryl esters. Biochim. Biophys. Acta, 1128, 1992, 83–92.PubMedCrossRefGoogle Scholar
  5. [5]
    Parks J.S., Thuren T.Y. and Schmitt J.D. Inhibition of lecithin: cholesterol acyl acyltransferase activity by synthetic phosphatidylcholine species containing eicosapentaenoic acid or docosahexaenoic acid in the sn-2 position. J. Lipid Res., 33, 1992, 879–887.PubMedGoogle Scholar
  6. [6] Thomas M.S., Babiak J. and Rude L.L. Lecithin: cholesterol acyltransferase (LCAT)
    catalyzes transacylation of intact cholesteryl esters. J. Biol. Chem., 265, 1990, 2665–2670.Google Scholar
  7. [7] Carlson L.A. and Holmquist L. Evidence for deficiency of high density lipoprotein lecithin: cholesterol acyltransferase activity (alpha LCAT)
    in Fish Eye Disease. Acta Med. Scand., 218, 1985, 189–196.Google Scholar
  8. [8]
    Brown M.L., Hesler C. and Tall R. Plasma enzymes and transfer proteins in cholesterol metabolism. Curr. Opinion Lipidol., 1, 1990, 122–127.CrossRefGoogle Scholar
  9. [9]
    Francone O.L., Gurakar A. and Fielding C. Distribution and functions of lecithin: cholesterol acyltransferase and cholesteryl ester transfer protein in plasma lipoproteins. J. Biol. Chem., 264, 1989, 7066–7072.PubMedGoogle Scholar
  10. [10]
    Norum K.R. and Gjone E. Familial plasma lecithin: cholesterol acyltransferase deficiency. Biochemical study of a new inborn error of metabolism. Scand. J. Clin. Lab. Invest., 20, 1967, 231–243.Google Scholar
  11. [11]
    Carlson L.A. and Philipson B. Fish-Eye Disease: A new familial condition with massive corneal opacities and dyslipoproteinemia. Lancet, 2, 1979, 922–924.PubMedGoogle Scholar
  12. [12]
    Frolich J., Hoag G., Mc Leod R., Hayden M., Godin D.V., Wadsworth L.D., Critchley J.D. and Pritchard P.N. Hypoalphalipoproteinemia resembling Fish Eye Disease. Acta Med. Scand., 221, 1987, 291–298.CrossRefGoogle Scholar
  13. [13]
    Assmann G., Von Eckardstein A. and Funke H. Lecithin: cholesterol acyltransferase and Fish Eye Disease. Curr. Opinion Lipid., 2, 1991, 110–117.CrossRefGoogle Scholar
  14. [14]
    Assmann G., Schmitz A., Funke H. and Von Eckardstein A. Apolipoprotein A-I and HDL deficiency. Curr. Opinion Lipid., 1, 1990, 110–115.CrossRefGoogle Scholar
  15. [15]
    Matsuzawa Y., Yamashita S., Kameda K., Kubo M., Tarin S and Hara I. Marked hyper-HDL2-cholesterolemia associated with premature corneal opacity. Atherosclerosis, 53, 1984, 207–212.PubMedCrossRefGoogle Scholar
  16. [161.
    Mc Lean J., Fielding C., Drayna D., Dieplinger H., Baer B., Kohr W., Heuzel W. and Lawn R. Cloning and expression of human lecithin: cholesterol acyltransferase cDNA. Proc. Nati. Acad. Sci. USA, 83, 1986, 2335–2339.CrossRefGoogle Scholar
  17. [17]
    Chung K.S., Jahnani M., Hara S. and Lacko A.B. Human plasma LCAT amino acid sequence. Can. J. Biochem. Cell. Biol., 61, 1983, 875–881.Google Scholar
  18. [18]
    Teisberg P. and Gjone E. A probable linkage of LCAT in man to the alpha haptoglobine locus on chromosome 16. Nature, 249, 1974, 550–551.PubMedCrossRefGoogle Scholar
  19. [19]
    Azoulay M., Henry I., Tata F., Weil D., Grzeschik K.H., Mc Intyre N., Williamson R., Humphries S.E. and Juniere C. The structural gene for human lecithin: cholesterol acyltransferase maps to 16 q 22. Cytogenet. Cell. Genet., 40, 1985, 573.Google Scholar
  20. [20]
    Meroni G., Malgaretti N., Pontoglio M., Ottolenghi S. and Tarannelli R. Functional analysis of the human LCAT gene promoter. B.B.R.C., 180, 1991, 1469–1475.Google Scholar
  21. [21]
    Yang C.Y., Manaogian D., Pao Q., Fee F.S., Knapp R.D., Gotta A.M. and Pownall H.J. Lecithin: cholesterol acyltransferase: functionnal regions and a structural model of the enzyme. J. Biochem., 262, 1987, 3086–3091.Google Scholar
  22. [22]
    Jauhiainen M., Stevenson K.J. and Dolphin P.J. Human lecithin: cholesterol acyltransferase. The vicinal nature of cysteine 31 and cysteine 184 in the catalytic site. J. Biol. Chem., 263, 1988, 6525–6533.PubMedGoogle Scholar
  23. [23]
    Francone O.I.. and Fielding C.J. Structure–Function relationships in human lecithin: cholesterol acyltransferase site–directed mutagenesis at serine residues 181 and 216. Biochemistry, 30, 1991, 10074–10077.PubMedCrossRefGoogle Scholar
  24. [24]
    Francone O.L. and Fielding C.J. Effects of site -directed mutagenesis at residues of cysteine-31 and cysteine-184 on lecithin = cholesterol acyltransferase activity. Proc. Natl. Acad. Sci. USA, 88, 1991, 1716–1720.PubMedCrossRefGoogle Scholar
  25. [25]
    Jonas A. Lecithin: cholesterol acyltransferase in the metabolism of high density lipoproteins. Biochim. Biophys. Acta, 1084, 1991, 205–220.PubMedCrossRefGoogle Scholar
  26. [26]
    Subbaiah P.V. Lysolecithin acyltransferase of human plasma: assay and characterization of enzyme activity. in: Methods in Enzymology, Acad. Press, 129, 1986, 790–797.Google Scholar
  27. [27]
    Parthasarathy S. and Barnett J. Phospholipase A2 activity of low density lipoprotein: evidence for an intrinsic phospholipase A2 activity of apolipoprotein B-100. Proc. Natl. Acad. Sci. USA, 87, 1990, 9741–9745.PubMedCrossRefGoogle Scholar
  28. [28]
    Collet X. and Fielding C.J. Effects of inhibitors of N-linked oligo saccharide processing on the secretion, stability, an activity of LCAT. Biochemistry, 30, 1991, 3228–3234.PubMedCrossRefGoogle Scholar
  29. [29]
    Francone O.L., Evangelista L. and Fielding C.J. Lecithin-cholesterol acyltransferase: effects of mutagenesis at N-linket oligo saccharide attachment sites on acyl acceptor specificity. Biochim. Biophys. Acta, 1166, 1993, 301–304.PubMedCrossRefGoogle Scholar
  30. [30]
    Anantharamaiah G.M., Venkatachalapathi Y.V., Brouillette C.G. and Segrest J.P. Use of synthetic peptide analogues to localize lecithin: cholesterol acyl transferase activating domain in apolipoprotein A-I. Arteriosclerosis, 10, 1990, 95–105.PubMedCrossRefGoogle Scholar
  31. [31]
    Minnich A., Collet X., Roghani A., Cladaras C., Hamilton R.L., Fielding C. and Zannis V.I. Site directed mutagenesis and structure–function analysis of the human apo A-1. Relation between LCAT activation and lipid binding. J. Biol. Chem., 267, 1992, 16553–16560.PubMedGoogle Scholar
  32. [32]
    Banka C.L., Bonnet D.J., Black A.S., Smith R.S. and Curtiss L.K. Localization of an apolipoprotein A-I epitope critical for activation of LCAT. J. Biol. Chem., 266, 1991, 23886–23892.Google Scholar
  33. [33]
    Wong L., Curtiss L.K., Huang J., Mann C.J., Maldonado B. and Roheim P.S. Altered epitope expression of human interstitial fluid apolipoprotein A-I reduces its ability to activate LCAT. J. Clin. Invest., 90, 1992, 2370, 2375.Google Scholar
  34. [34]
    Calvo C., Ulloa N., Del Pozo R and Verdugo C. Decreased activation of LCAT by glucated apolipoprotein A-I. Eur. J. Clin. Chem. Clin. Biochem., 31, 1993, 217–220.Google Scholar
  35. [35]
    Taranelli R., Pontoglio M., Candiani G., Ottolenghi S., Dieplinger H., Catapeno A., Albers J., Vergani C. and Mc Lean J. Lecithin cholesterol acyl transferase deficiency: molecular analysis of a mutated allele. Hum. Genet., 85, 1990, 195–199.Google Scholar
  36. [36]
    Gotoda T., Yamada N., Murase T., Sakuma M., Murayama N., Shimano H., Kozaki K., Albers J., Yazaki Y. and Adanuma Y. Differential phenotypic expression by three mutant alleles in familial LCAT deficiency. Lancet, 338, 1991, 778–781.PubMedCrossRefGoogle Scholar
  37. [37]
    Maeda E., Naka Y., Matozaki T., Sakuma M., Akanuma Y., Yoshino G. and Kasuga M. LCAT deficiency with a missense mutation in exon 6 of the LCAT gene. B.B.R.C., 178, 1991, 460–466.Google Scholar
  38. [38]
    Skretting G., BlomhoffJ.P., Solheim J. and Prydz H. The genetic defect of the original Norwelfian lecithin: cholesterol and transferase deficiency families. F.E.B.S., 309, 1992, 307–310.Google Scholar
  39. [39] Funke H., Von Eckardstein A., Pritchard P.H., Hornby A.E., Wiebusch H., Motti C., Hayden M.R., Dachet C., Jacotot B., Gerdes U., Faergeman O., Albers J.J., Colleoni N., Catapano A., Frohlich J. and Assmann G. Genetic and phenotypic heterogeneity in familial lecithin: cholesterol acyltransferase (LCAT)
    deficiency. J. Clin. Invest., 91, 1993, 677–683.CrossRefGoogle Scholar
  40. [40] Klein H.G., Lohse P., Duverger N., Albers J.J., Rader D.J., Zech L.A., Fojo S.S. and Brewer H.B. Two different allelic mutations in the LCAT gene resulting in classic LCAT deficiency: LCAT (TYR 83 4 STOP)
    and LCAT (TYR 156 As N). J.Lipid Res., 34, 1993, 49–58.Google Scholar
  41. [41]
    Dumon M.F., Berard A., Dabadie H., Rougier M.B. and Clerc M. Observation biochimique d’un nouveau cas de déficit classique en lécithine: cholesterol acyltransférase. Ann. Biol. Clin. (submitted).Google Scholar
  42. [42]
    Frolich J., Hoag G., Mc Leod R., Hayden M., Godin D.V., Wadsworth L.D. Critchley J.D., Pritchard P.H. Hypoalphalipoproteinemia resembling Fish Eye Disease. Acat Med. Scand., 221, 1987, 297–298.Google Scholar
  43. [43]
    Funke H., Von Eckardstein A., Pritchard P.H., Albers J.J., Kastelein J.J.P., Drost C. and Assmann G. A molecular defect causing Fish Eye Disease: an amino acid exchange in LCAT leads to the selective loss of alpha-LCAT activity. Proc. Natl. Acad. Sci. USA, 88, 1991, 4855–4859.PubMedCrossRefGoogle Scholar
  44. [44]
    Klein H.G., Lohse P., Pritchard P.H., Bojanovski D., Schmidt H. and Brewer H.B. Two different allelic mutations in the LCAT gene associated with the Fish Eye syndrome. J. Clin. Invest., 89, 1992, 499–506.CrossRefGoogle Scholar
  45. [45]
    Skretting G. and Prydz H. An amino acid exchange in exon I of the human LCAT gene is associated with Fish Eye Disease. B.B.R.C., 182, 1992, 583–587.Google Scholar
  46. [46]
    Clerc M., Dumon M.F., Sess D., Freneix-Clerc M., Mackness M. and Conri C. A “Fish-Eye disease” familial condition with massive corneal opacities and hypoalphalipoproteinemia: clinical, biochemical and genetic features. Europ. J. Clin. Invest., 21, 1991, 616–624.PubMedCrossRefGoogle Scholar
  47. [47]
    Klein H.G., Fojo S.S., Duverger N., Clerc M., Dumon M.F., Albers J.J., Marcovina S. and Brewer H.B. Fish-Eye syndrome: a molecular defect in LCAT gene associated with normal alpha-LCAT specific activity. Implications for classification and diagnosis. J. Clin. Invest., 92, 1993, 379–485.Google Scholar
  48. [48]
    Rader D.J., Ikewaki K., Duverger N., Schmidt H., Pritchard H., Frolich J., Clerc M., Dumon M.F., Fairwell T., Loren Z., Fojo S.S. and Brewer H.B. Rapid catabolism of apolipoprotein A-II and high density lipoproteins containing apo A-II in classic LCAT deficiency and Fish-Eye disease. J. Clin. Invest. (in press).Google Scholar
  49. [49]
    Kastelein J.J.P., Pritchard P.H., Erkelens D.W., Kuivenhoven J.A., Albers J.J. and Frolich J.J. Familial high density lipoprotein deficiency causing corneal opacities (Fish Eye disease) in a familial dutch descent. J. Intern. Med., 231, 1992, 413–419.PubMedCrossRefGoogle Scholar
  50. [50]
    Assmann G., Schmitz G. and Brewer H.B. Familial high density lipoprotein deficiency: Tangier disease. in: The metabolic basis of inherited disease. Scriver C.R., Beaudet A.L., Sly W.S. and Valle D. Ed. Mc Graw-Hill Inc, N.Y., 1989, 11671282.Google Scholar
  51. [51]
    Dumon M.F., Freneix-Clerc M., Maviel M.J. and Clerc M. Familial hypocholesterolemia and HDL deficiency. Adv. Exp. Med., 285, 1991, 161–171.CrossRefGoogle Scholar
  52. [52]
    Norum R.A., Lakier J.B., Goldstein S., Angel A., Goldberg R.B., Block W.D., Nofze D., Dolphin P.J., Edelglass J., Bogorad DD and Alaupovic P. Familial deficiency of apolipoproteins A-I and C-III and precocious coronary-artery disease. N. Engi. J. Med., 306, 1982, 1513–1519.CrossRefGoogle Scholar
  53. [53]
    Oraovas J.M., Cassidy D.K., Civeira F., Bisgaier C.L. and Schaeffer E.J. Familial apo A-I, C-III and A-IV deficiency and premature atherosclerosis due to a deletion of a gene complex on chromosome il. J. Bio!. Chem., 264, 1989, 16339–16342.Google Scholar
  54. [54]
    Funke H.A., Von Eckardstein A., Pritchard P.H., Karas M., Albers J.J. and Assmann G. A frameshift mutation in the apolipoprotein A-I gene causes high density lipoprotein deficiency, partial lecithin: cholesterol acyltransferase deficiency and corneal opacities. J. Clin. Invest., 87, 1991, 371–376.PubMedCrossRefGoogle Scholar
  55. [55]
    Schmitz G. and Williamson E. High-density lipoprotein metabolism, reverse cholesterol transport and membrane protection. Curr. Opin. Lipidol., 2, 1991, 177–189.CrossRefGoogle Scholar
  56. [56]
    Neary R., Bhatnagar D., Durrington P., Ishola M., Arroi S. and Mackness M. An investigation of the role of LCAT and triglyceride-rich lipoprotein in the metabolism of pre-beta high density lipoproteins. Atherosclerosis, 89, 1991 35–48.PubMedCrossRefGoogle Scholar
  57. [57]
    Mackness M.I., Walker C.H. and Carlson L.A. Low A-Esterase activity in serum of patients with Fish-Eye disease. Clin. Chem., 33, 1987, 587–588.PubMedGoogle Scholar
  58. [58]
    Mackness M.I., Peuchant E., Dumon M.F., Walker C.H. and Clerc M. Absence of “A”-Esterase activity in the serum of a patient with Tangier disease. Clin. Biochem., 22, 1989, 475–478.PubMedCrossRefGoogle Scholar
  59. [59]
    Albers J.J., Bergelin R.O. and Aldolphson J.C. Population-based reference values for LCAT. Atherosclerosis, 43, 1982, 369–379.PubMedCrossRefGoogle Scholar
  60. [60]
    Stokke K.T. and Norum K.R. Determination of LCAT in human blood plasma. Scand. J. Clin. Lab. Invest., 27, 1971, 21–27.CrossRefGoogle Scholar
  61. [61]
    Channon K.M., Clegg R.J., Bathnagar D., Ishola M., Arroi S. and Durrington P.N. Investigation of lipid transfer in human serum leading to the development of an isotopic method for the determination of endogenous cholesterol esterification and transfer. Atherosclerosis, 80, 1990, 217–226.PubMedCrossRefGoogle Scholar
  62. [62]
    Frohlich J. and Mc Leod R. LCAT deficiency syndromes. Adv. Exp. Med. Biol., 201, 1987, 181–194.Google Scholar
  63. [63]
    Barchiesi B.J., Eckel R.H. and Ellis P.P. The cornea and disorders of lipid metabolism. Survey. Ophtalm., 36, 1991, 1–22.CrossRefGoogle Scholar
  64. [64]
    Koster H., Savoldelli M., Dumon M.F., Dubourg L., Clerc M. and Pouliquen Y.J.M. A Fish-Eye disease like familial condition with massive corneal clouding and dyslipoproteinemia. Report of clinical, histologic, electron microscopic and biochemical features. Cornea, 11, 1992, 452–464.PubMedCrossRefGoogle Scholar
  65. [65]
    Clerc M. and Pouliquen Y.J.M. L’Arcus juvenilis et les fonctions de la lecithin: cholesterol acyltransferase. A propos d’un cas familial de Fish-Eye disease. Bull. Acad. Nati. Med. Paris, 1993 (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • M. F. Dumon
    • 1
  • A. Berard
    • 1
  • M. Clerc
    • 1
  1. 1.Laboratoire Central de BiochimieHôpital Saint-AndreBordeaux CedexFrance

Personalised recommendations