Serum Cholinesterase: Genetics, Enzymology, Diagnostic Use and the Association with Clinical Disorders

  • Ellen
  • Friedrich Werner Schmidt
Part of the NATO ASI Series book series (NSSA, volume 266)


Cholinesterase (EC, CHE or BChE) also called butyrylcholinesterase or serum cholinesterase, has evoked the interest of geneticists, biochemists, pharmacologists, and clinicians, particularly hepatologists. Recent molecular biological investigations have thrown light on new facets of this plasma enzyme. Some of them will be reported, and a number of still open questions discussed, preferably under clinical aspects, without claiming comprehensiveness.


Cholinesterase Activity Plasma Cholinesterase Serum Cholinesterase BChE Activity Plasma Cholinesterase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kalow, K. and K. Genest, A method for the detection of atypical forms of human cholinesterase, determination of dibucaine numbers. Can. J. Biochem. 35: 1957; 339–346PubMedGoogle Scholar
  2. 2.
    Harris, H. and M. Whittaker, Differential inhibition of human serum cholinesterase with fluoride: recognition of two new phenotypes. Nature19I: I961; 496–498Google Scholar
  3. 3.
    Liddell, J., H. Lehmann and E. Silk, A “silent” pseudocholinesterase gene. Nature 193: 1962; 561–562PubMedCrossRefGoogle Scholar
  4. 4.
    Bartels, C.F., F.S. Jensen, O. Lockridge, A.F.L. van der Spek, H.M. Rubinstein, T. Lubrano and B.N. La Du, DNA mutation associated with the human butyrylcholinesterase K-variant and its linkage to the atypical variant mutation and other polymorphic sites. Am. J. Hum. Genet. 50: 1992; 1086–1103PubMedGoogle Scholar
  5. 5.
    Rubinstein, A.A. Dietz and T. Lubrano, Elk, another quantitative variant at cholinesterase locus 1. J. Med. Genet. 15: 1978; 27–29PubMedCrossRefGoogle Scholar
  6. 6.
    Garry, P.J., A.A. Dietz, T. Lubrano, P.C. Ford, K. James and H.M. Rubinstein, J. med. Genet. 13: 1976; 38–42PubMedCrossRefGoogle Scholar
  7. 7.
    Whittaker, M. and J.J. Britten, Elh, a new allele at cholinesterase locus 1. Hum. Hered. 37: 1987; 54–58PubMedCrossRefGoogle Scholar
  8. 8.
    Schmidt, E., R. Klauke and F.W. Schmidt, Proposed routine method for phenotyping of cholinesterase (CHE) locus El variants with butyrylcholine as substrate at 37°C, Fresenius Z. Anal. Chem. 330: 1988; 364CrossRefGoogle Scholar
  9. 9.
    Lockridge, O. and B. N. La Du, Structure of the human butyrylcholinesterase gene and expression in mammalian cells, in: Cholinesterases, J. Massoulié et al. eds., Am. Chem. Soc. Washington, DC, 1991, 168–171Google Scholar
  10. 10.
    Arpagaus, M., M. Kott, K.P. Vatsis, C.F. Bartels, B.N. La Du and O. Lockridge, Structure of the gene for human butyrylcholinesterase. Evidence for a single copy. Biochemistry 29: 1990; 124–131PubMedCrossRefGoogle Scholar
  11. 11.
    Gaughan, G., H. Park, J. Priddle, I. Craig and S. Craig, Refinement of the localization of human butyrylcholinesterase to chromosome 3g26.1-g26.2 using a PCR-derived probe. Genomics 11: 1991; 455–458PubMedCrossRefGoogle Scholar
  12. 12.
    McGuire, M.C., C.P. Nogueira, C.F. Bartels, H. Lightstone, A. Hajra, A.F. van der Spek, O. Lockridge and B.N. La Du, Identification of the structural mutation responsible for the dibucaine-resistant (atypical) variant form of human serum cholinesterase. Proc. Nat. Acad. Sci. U.S.A. 86: 1989; 953–957CrossRefGoogle Scholar
  13. 13.
    Nogueira, C.P., C.F. Bartels, M.C. McGuire, S. Adkins, T. Lubrano, H.M. Rubinstein, H. Lightstone, A.F. van der Spek, O. Lockridge and B.N. La Du, Identification of two different point mutations associated with the fluoride-resistant phenotype for human butyrylcholinesterase. Am. J. Hum. Genet. 51: 1992; 821–828PubMedGoogle Scholar
  14. 14.
    Jensen, F.S. C.F. Bartels and B.N. La Du, A DNA point mutation associated with the H-variant of human butyrylcholinesterase, in: Cholinesterases, J. Massoulié et al. eds. Am. Chem. Soc. Washington DC, 1991, 189Google Scholar
  15. 15.
    Whittaker, M. and J.J. Britten, Segregation of the sub(1)(j) gene for plasma cholinesterase in family studies. Hum. Her. 39: 1989; 1–6CrossRefGoogle Scholar
  16. 16.
    Bartels, C.F., K. James, B.N. La Du, DNA mutations associated with the human butyrylcholinesterase J-variant. Am. J. Hum. Genet. 50: 1992; 1104–1114PubMedGoogle Scholar
  17. 17.
    Evans and J Wardell, On the identification and frequency of the J and K cholinesterase phenotypes in a Caucasian population. J. Med. genet. 21: 1984; 99–102Google Scholar
  18. 18.
    Bartels, C.F., O. Lockridge and B.N. La Du, DNA coding for the K polymorphism in linkage disequilibrium with atypical human butyrylcholinesterase complicates phenotyping, in: Cholinesterases, J. Massoulié et al. eds.Am. Chem. Soc., Washington, DC, 1991, 191Google Scholar
  19. 19.
    Szeinberg, A., S. Pipano, M. Assa, J.H. Medalie and H.N. Neufeld, High frequency of atypical pseudocholinesterase gene among Iraqi and Iranian Jews. Clin. Genet. 3: 1972; 123–127PubMedCrossRefGoogle Scholar
  20. 20.
    Whittaker, M., Cholinesterase, Karger, Basel, 1986Google Scholar
  21. 21.
    Arnaud, J., H. Brun, R. Llobera and J. Constans, Serum cholinesterase polymorphism in France: an epidemiological survey of the deficient alleles detected by an automated micro-method. Ann. Hum. Biol. 18: 1991; 1–8PubMedCrossRefGoogle Scholar
  22. 22.
    Chautard-Freire-Maia, E.A. S.L. Primo-Parmo, M.A. Canever de Lourenço and L. Culpi, Frequencies of atypical serum cholinesterase among Caucasians and Negroes from Southern Brazil. Hum. Hered. 34: 1984; 388–392PubMedCrossRefGoogle Scholar
  23. 23.
    Evans, R.T., A. Walker and K.M. Bowness, Improved accuracy of cholinesterase phenotyping after participation in a proficiency survey. Clin. Chem. 33: 1987; 823–825PubMedGoogle Scholar
  24. 24.
    Rosalki, S.B., Genetic influences on diagnostic enzymes in plasma. Enzyme 39: 1988; 95–109PubMedGoogle Scholar
  25. 25.
    Masson, P., A. Chatonnet and O. Lockridge, Evidence for a single butyrylcholinesterase gene in individuals carrying the C5 plasma cholinesterase variant (CHE2). FEBS 262: 1990; 1 15–1 18Google Scholar
  26. 26.
    Harris, H., D.A. Hopkinson, E.B. Robson and M. Whittaker. Genetical studies on a new variant of serum cholinesterase detected by electrophoresis. Ann. Hum. Genet. 26: 1963; 359–382CrossRefGoogle Scholar
  27. 27.
    Masson, P., Molecular heterogeneity of human plasma cholinesterase, in: Cholinesterases, J. Massoulié et al. eds. Am. Chem. Soc. Washington, DC., 1991, 42–46Google Scholar
  28. 28.
    Soreq, H., R. Zamir, D. Zevin-Sonkin and H. Zakut, Human cholinesterase genes localized by hybridization to chromosomes 3 and 16. Hum. genet. 77: 1987; 325–328PubMedCrossRefGoogle Scholar
  29. 29.
    Marazita, M.L., B.J.B. Keats, M.A. Spence, R.S. Sparkes, L.L. Field, M.C. Sparkes and M. Crist, Mapping studies of the serum cholinesterase-2-locus (CHE2). Hum. Genet. 83: 1989; 139–144PubMedCrossRefGoogle Scholar
  30. 30.
    Eiberg, H., L.S. Nielsen, J. Klausen, M. Dahlen, M. Kristensen, M.L. Bisgaard, N. Moller and J. Mohr, Linkage between serum cholinesterase 2 (CHE2) and gamma-crystalline gene cluster (CRYG): assignment to chromosome 2. Clin. Genet. 35: 1989, 313–321PubMedCrossRefGoogle Scholar
  31. 31.
    Gueirrero, J.F., S.E. Santos and G.F. Aguiar, Serum cholinesterase polymorphism (CHEZ and CHE2 loci) among several Indian groups from Amazon region of Brazil, and segregation of the C5 variant in families. Gene Geography 3: 1989; I I - 20Google Scholar
  32. 32.
    Steegmüller, H., On the geographical distribution of pseudocholinesterase variants. Humangenetik 26: 1975; 167–185PubMedGoogle Scholar
  33. 33.
    Oimomi, M., J. Ohkawa, S. Saeki and S. Baba, A familial study of C5+cholinesterase and its frequency in the normal population. Gastroent. japon. 23: 1988; 680–683Google Scholar
  34. 34.
    Schmidt, E., F.W. Schmidt, A. Delbrück and E. Henkel, Variants of cholinesterase. Adv. Clin. Enzymol. 2: 1982; 55–66Google Scholar
  35. 35.
    Lockridge, O., H.W. Eckerson and B. N. La Du, Interchain disulphide bonds and subunit organization in human serum cholinesterase. J. biol. Chem. 254: 1979; 8324–8330Google Scholar
  36. 36.
    Fishman, J.B. and R.E. Fine, A trans Golgi-derived exocytic coated vesicle can contain both newly synthesized cholinesterase and internalized transferrin. Cell 48: 1987; 157–164PubMedCrossRefGoogle Scholar
  37. 37.
    Ostergaard, D., J. Viby-Mogensen, H.K. Hand and L.T. Skovogaard, Half-life of plasma cholinesterase. Acta Anaesthesiol. Scand. 32: 1988; 266–269Google Scholar
  38. 38.
    Neitlich, H.W., Increased plasma cholinesterase activity and succinylcholine resistance: a genetic variant. J. clin. Invest. 45: 1966; 380–387PubMedCrossRefGoogle Scholar
  39. 39.
    Yoshida, A. and A.G. Motulski, A pseudocholinesterase variant (E Cynthiana) associated with elevated plasma enzyme activity. Am. J. Hum. genet. 21: 1969; 486–498PubMedGoogle Scholar
  40. 40.
    Delbrück, A. and E. Henkel, A rare genetically determined variant of pseudocholinesterase in two German families with high plasma enzyme activity. Eur. J. Biochem. 99: I979; 65–69Google Scholar
  41. 41.
    Brock, A., Additional electrophoretic components of cholinesterase in plasma: a phenomenon of no importance to the total plasma cholinesterase activity. J. Clin. Chem.Clin. Biochem. 27: 1989; 429–431PubMedGoogle Scholar
  42. 42.
    Lockridge, O., C.F. Bartels, T.A. Vaughan, C.K. Wong, S.E. Norton and L.L. Johnson, Complete amino acid sequence of human serum cholinesterase. J. biol. Chem. 262: 1987; 549–557PubMedGoogle Scholar
  43. 43.
    Yamato, K., I. Huang, H. Muensch, A. Yoshida, H.-W. Goedde and D.P. Agarwal, Amino acid sequence of the active site of human pseudocholinesterase. Biochem. Genet. 21: 1983; 135–145PubMedCrossRefGoogle Scholar
  44. 44.
    Arpagaus, M., A. Chatonnet, P. Masson, M. Newton, T.A. Vaughan, C.F. Bartels, C.P. Nogueira, B.N. La Du and O. Lockridge, Use of the polymerase chain reaction for homology probing of butyrylcholinesterases from several vertebrates. J. biol. Chem. 266: 1991; 6966–6974PubMedGoogle Scholar
  45. 45.
    Neville, L.F., A. Gnatt, R. Padan, B. Seidman and H. Soreq, Anionic site interactions in human butyrylcholinesterase disrupted bytwo single point mutations. J. biol. Chem. 265: 1990; 20735–20738PubMedGoogle Scholar
  46. 46.
    Chatonnet, A. and O. Lockridge, Comparison of butyrylcholinesterase and actylcholinesterase. Biochem. J. 260: 1989; 625–634PubMedGoogle Scholar
  47. 47.
    Lockridge, O. and B.N. La Du, Comparison of atypical and usual human serum cholinesterase. J. biol. Chem. 253: 1978; 361–366PubMedGoogle Scholar
  48. 48.
    Augustinsson, K.B., Cholinesterases: a study in comparative enzymology. Acta Physiol. Scand. 15:1948, Suppl. 52; 1–182Google Scholar
  49. 49.
    Schmidt, E., F.W. Schmidt, Sex differences of plasma cholinesterases in the rat. Enzyme 23: 1978; 52–55PubMedGoogle Scholar
  50. 50.
    Wright, P.G., V. de Vos, E. Marcus, M. Ganhao and J. Hattingh, Species variation in plasma cholinesterase activity. Comp. Biochem. Physiol. 70: 1981; 289–291Google Scholar
  51. 51.
    Kutty, K.M., Biochemical functions of cholinesterase. Clin. Biochem. 13: 1980; 239–243PubMedCrossRefGoogle Scholar
  52. 52.
    Lockridge, O., Substance P hydrolysis by human serum cholinesterase. J. Neurochem. 39: 1982; 106–110PubMedCrossRefGoogle Scholar
  53. 53.
    Myers. C., O. Lockridge, B.N. La Du, Hydrolysis of methylprednisolone acetate by human serum cholinesterase. Drug Metab. Dispos. 10: 1982; 279–280Google Scholar
  54. 54.
    Rao, R.V., A.S. Balasubramanian, The peptidase activity of human serum butyrylcholinesterase:studies using monoclonal antibodies and characterization of the peptidase.J. prot. chem. 12: 1993; 103–110Google Scholar
  55. 55.
    Ram, Z., M. Molcho, Y.L. Danon, S. Almong, J. Baniel, A. Karni and J. Shemer, The effect of pyridostigmine on respiratory function in healthy and asthmatic volunteers. Israel J. med. Sci. 27: 1991; 664–668Google Scholar
  56. 56.
    Gordon, C.J. and L. Fogelson, Relationship between serum cholinesterase activity and the change in body temperature and motor activity in the rat. A dose-response study of diisopropyi iiiuorophosphate. Neurotox. Teratol. 15: 1993; 21–25CrossRefGoogle Scholar
  57. 57.
    Layer, P.G., Expression and possible functions of cholinesterases during chicken neurogenesis, in: Cholinesterases, J. Massoulié et al. eds. Am. Chem. Soc., Washington, DC, 1991. 350–357Google Scholar
  58. 58.
    Massoulié, J., S. Bon and M. Vigny, The polymorphism of cholinesterase in vertebrates. Neurochem. int. 2: 1980; 161–184CrossRefGoogle Scholar
  59. 59.
    Ehrlich, G., E. Viegas-Péquinot, D. Ginzberg, L. Sindel, H. Soreq and H. Zakut, Mapping the human acetylcholinesterase gene to chromosome 7q22 by fluorescent in situ hybridization coupled with selective PCR amplification from a somatic hybrid cell panel and chromosome-sorted DNA libraries. Genomics 13: 1992; 1192–1197PubMedCrossRefGoogle Scholar
  60. 60.
    Getman, D.K., J.H. Eubanks, S. Camp, G.A. Evans and P. Taylor, The human gene encoding acetylcholinesterases located on the long arm of chromosome 7. Am. J. Hum. Genet. 51: 1992; 170–177PubMedGoogle Scholar
  61. 61.
    Sorensen, K., U. Brodbeck, A.G. Rasmussen and B. Norgaard-Pedersen, Normal human serum contains two forms of acetylcholinesterase. Clin. Chim. Acta 158: 1986; 1–6PubMedCrossRefGoogle Scholar
  62. 62.
    Edwards, J.A. and S. Brimijoin, Divergent regulation of acetylcholinesterase and butyrylcholinesterase in tissues of the rat. J. Neurochem. 38: 1982; 1393–1403PubMedCrossRefGoogle Scholar
  63. 63.
    Lapidot-Lifson, Y., C.A. Prody, D. Ginzberg, D. Meytes, H. Zakut and H. Soreq, Coamplification of human acetylcholinesterase and butyrylcholinesterase genes in blood cells: correlation with various leukemias and abnormal megakaryocytopoiesis. Proc. Nat. Acad. Sci. U.S.A. 86: 1989; 4715–4719CrossRefGoogle Scholar
  64. 64.
    Soreq, H., Y. Lapidot-Lifson and H. Zakut, A role for cholinesterase in tumorigenesis? Cancer Cells 3: 1991; 511–516PubMedGoogle Scholar
  65. 65.
    Birkhauser, H. and E.A. Zeller, Cholinesterase und Sexualhormone. Helv.chim.Acta 23: 1940; 1460–1464CrossRefGoogle Scholar
  66. 66.
    Everett, H.W. and C.H. Sawyer, Effects of castration and treatment with sex steroids on synthesis of serum cholinesterase in rat. Endocrinology 39: 1946; 323–343PubMedCrossRefGoogle Scholar
  67. 67.
    Illsley, N.P. and C.A. Lamartinière, Endocrine regulation of rat serum cholinesterase activity. Endocrinology 108: 1981; 1737–1743PubMedCrossRefGoogle Scholar
  68. 68.
    Lamartinière, C.A.,Growth hormone modulates serum cholinesterase. Endocrinology 118: 1986; 1252 1254Google Scholar
  69. 69.
    Kambam, J.R., R.J. Naukam, W. Parris, J.J. Franks, S.M. Perry, B.V.R. Sastry and B.E. Smith, Effects of progesterone, estriol, and prostaglandin on pseudocholinesterase activity. Anesthesiology 71:1989; A 883Google Scholar
  70. 70.
    Sidell, F.R. and A. Kaminskis, Influence of age, sex and oral contraceptives on human blood cholinesterase activity. Clin. Chem. 21: 1975; 1393–1395PubMedGoogle Scholar
  71. 71.
    Blaauwen, D.H. den, W.A. Poppe and W. Tritschler, Cholinesterase (EC 3.1. 1.8) mit Butyryl-thiocholinjodid als Substrat: Referenzwerte in Abhängigkeit von Alter und Geschlecht unter Berücksichtigung hormoneller Einflüsse und Schwangerschaft. J. Clin. Chem. Clin. Biochem. 21: 1983; 381–386Google Scholar
  72. 72.
    Lepage, L., Cholinesterase, in: Interpretation of Clinical Laboratory Tests. G. Siest, J. Henny, F. Schiele and D.S. Young, eds. Biochemical Publications, Forster City, Ca, U.S.A., 1985, 209–219Google Scholar
  73. 73.
    Pritchard, J.A., Plasma cholinesterase activity in normal pregnancy and in eclamptogenic toxemias. Am. J. Obstet. Gynecol. 70: 1955; 1083–1086PubMedGoogle Scholar
  74. 74.
    Foldes, F.F., T. Arai, H.H. Gentsch and Y. Zarda, The influence of glucocorticoids on plasma cholinesterase. Proc. Soc. exp. Biol. 146: 1974; 918–920PubMedCrossRefGoogle Scholar
  75. 75.
    Bradamante, V. and E. Kunec-Vaji“c, Effect ofglucocorticoids on plasma cholinesterase in the rat. Biomed. Biochim. Acta 46: 1987; 439–443PubMedGoogle Scholar
  76. 76.
    Bradamante, V., E. Kunec-Vaji“c, M. Lisic, I. Dobric and I. Beus, Plasma cholinesterase activity in patients during therapy with dexamethasone or prednisone. Eur. J. clin. Pharmacol. 36: 1989; 253–257Google Scholar
  77. 77.
    Tiefenbach, B., L. Jordanov and G. Henninghausen, The glucocorticoid-induced inhibition of cholinesterase activity and the importance for drug interactions. Arch. Pharmacol. 345:1992; Suppl. 1, R101Google Scholar
  78. 78.
    Seto, Y. and T. Shinohara, Structure-activity relationship of reversible cholinesterase inhibitors including paraquat. Arch. Toxicol. 62: 1988; 37–40PubMedCrossRefGoogle Scholar
  79. 79.
    Hansen, W.E. and K. Nehammer, Inhibition of cholinesterase by oxmetidine. Gastroenterology 86: 1984; 1107Google Scholar
  80. 80.
    Buccafusco, J.J. and M.D. Smith, In vivo and in vitro cholinesterase inhibitor property of the antitumor agent caracemide. Res. Comm. Chem. Pathol. Pharmacol. 67: 1990; 219–227Google Scholar
  81. 81.
    Aden-Abdi, Y., T. Villen, O. Ericsson, L.L. Gustaysson and M.L. Dahl-Puustinen, Metrifonate in healthy volunteers: interrelationship between pharmacokinetic properties, cholinesterase inhibition and side-effects.Google Scholar
  82. Bull. WHO 68: 1990; 731–736Google Scholar
  83. 82.
    Bang, U., J. Viby-Mogensen and J.E. Wiren, The effect of bambuterol on plasma cholinesterase activity and suxamethonium-induced neuromuscular blockade in subjects heterozygous for abnormal plasma cholinesterase. Acta Anaesthesiol. Scand. 34: 1990; 600–604Google Scholar
  84. 83.
    Sharma, M. and L.-A. Svensson, Bambuterol, a selective inhibitor of human plasma butyrylcholinesterase, in: Cholinesterases, J. Massoulié et al. eds., Am. Chem. Soc. Washington, DC, U.S.A., 1991, 345Google Scholar
  85. 84.
    Berman, H.A. and K. Leonard, Interaction of tetrahydroaminoacridine with acetylcholinesterase and butyrylcholinesterase. Mol. Pharmacol. 41: 1992; 412–418PubMedGoogle Scholar
  86. 85.
    Laine-Cessac, P., A. Turcant, A. Premel-Cabic, J. Boyer and P. Allain, Inhibition of cholinesterases by histamine 2 receptor antagonist drugs. Res. Comm. Chem. Path. Pharm. 79: 1993; 185–193Google Scholar
  87. 86.
    Kao, Y.J., J. Tellez and D.R. Turner, Dose-dependent effect of metoclopramide on cholinesterases and suxamethonium metabolism. Br. J. Anaesth. 65: 1990; 220–224PubMedCrossRefGoogle Scholar
  88. 87.
    Whittaker, M., J.J. Britten, R.J. Wicks, Inhibition of the plasma cholinesterase variants by propranolol. Br. J. Anaesth. 53: 1981; 511–516PubMedCrossRefGoogle Scholar
  89. 88.
    Holmes, J.H., P. Kaufer and H. Zwarenstein, Effect of benzodiazepine derivatives on human blood cholinesterase in vitro. Res. Comm. Chem. Path. Pharm. 21: 1978; 367–370Google Scholar
  90. 89.
    Hoffman, R.S., G.C. Henry, M.A. Howland, R.S. Weisman, L. Weil and L..R. Goldfrank, Association between life-threatening cocaine toxicity and plasma cholinesterase activity. Ann. Emerg. Med. 21: 1992; 247–253Google Scholar
  91. 90.
    Lander, F., E. Pike, K. Hinke, A. Brock and J.B. Nielsen, Anti-cholinesterase agents uptake during cultivation of greenhouse flowers. Arch. Envir. Contam. Toxicol. 22: 1992; 159–162CrossRefGoogle Scholar
  92. 91.
    Filimore, C.M. and J.E. Lessenger, A cholinesterase testing program for pesticide applicators. J. occup. Med. 35: 1993; 61–70Google Scholar
  93. 92.
    Wu, Y.Q., J.D. Wang, J.S. Cheng, S.C. Chung and S.Y. Hwang, Occupational risk of decreased plasma cholinesterase among pesticide production workers in Taiwan. Am. J. Industr. Med. 16: 1989; 659–666Google Scholar
  94. 93.
    Kamal, A.A., N.T. Elgarthy, F. Maklady, M.A. Mostafa and A. Massoud, Serum cholinesterase and liver function among a group of organophosphorus pesticides sprayers in Egypt. J. toxicol. clin. exper. 10: 1990; 427–435Google Scholar
  95. 94.
    Faustini, A., F. Arpala, P. Pagliarella, F. Forastiere, P. Papini and C.A. Perucci, Monitoraggio delle colinesterasi in lavoratori agricoli e commercianti esposito ad esteri fosforici e carbammati. Med. Lavoro 83: 1992; 135–145PubMedGoogle Scholar
  96. 95.
    Rama, D.B. and K. Jaga, Pesticide exposure and cholinesterase levels among farm workers in the Republic of South Africa. Sci. Total Envir. 122: 1992; 315–319CrossRefGoogle Scholar
  97. 96.
    Lander, F., A. Brock, E. Pike, K. Hinke, Chronic subclinical intake of dietary anticholinesterase agents during the spraying season. Food Chem. Toxicol. 30: 1992; 37–40CrossRefGoogle Scholar
  98. 97.
    Brock, A. and V. Brock, Plasma cholinesterase activity in a healthy population group with no occupational exposure to known cholinesterase inhibitors: relative influence of some factors related to normal inter-and intra-individual variations. Scand. J. Clin. Lab. Invest. 50: 1990; 401–408PubMedCrossRefGoogle Scholar
  99. 98.
    Prody, C.A., P. Dreyfus, R. Zamir, H. Zakut and H. Soreq, De novo amplification within a “silent” human cholinesterase gene in a family subjected to prolonged exposure to organophosphorous insecticides. Proc. Nat. Acad. Sci. US.A. 86: 1989; 690–694CrossRefGoogle Scholar
  100. 99.
    Soreq, H. and H. Zakut, Amplification of butyrylcholinesterase and acetylcholinesterase genes in normal and tumor tissues: putative relationship to organophosphorous poisoning. Pharma. Res. 7: 1990; 1–7CrossRefGoogle Scholar
  101. 100.
    Panteghini, M. and R. Bonora, Evaluation of a new continuous colorimetric method for determination of serum pseudocholinesterase catalytic activity and its application to a centrifugal fast analyser. J. Clin. Chem. Clin. Biochem. 22: 1984; 671–676PubMedGoogle Scholar
  102. 101.
    Rostron, P. and T. Higgins, Serum pseudocholinesterase and dibucaine numbers as measured with the Technicon RA-1000 analyzer. Clin. Chem. 34: 1988; 1924–1925PubMedGoogle Scholar
  103. 102.
    Hasselberg, S., L. Mauck and D Nealon, Development of a Kodak Ektachem thin-film assay for serum cholinesterase. Clin. Chem. 35: 1989; 1120Google Scholar
  104. 103.
    Takeuchi, T., Y. Kabasawa, R. Horikawa and T. Tanimura. Mechanized assay of serum cholinesterase by specific colorimetric detection of released acid. Clin. Chim. Acta 205: 1992; 117–126CrossRefGoogle Scholar
  105. 104.
    Krull, N.B., J. Kropf and A.M. Gressner, Influence of reagent composition of atypical pseudocholinesterase activity measurement: comparison of a manual and an automated method and implications for routine. Eur. J. Clin. Chem. Clin. Biochem. 30: 1992; 545–546PubMedGoogle Scholar
  106. 105.
    Thomsen, T., H. Kewitz and O. Pleul. Estimation of cholinesterase activity (EC; in undiluted plasma and erythrocytes as a tool for measuring in vivo effects of reversible inhibitors. J. Clin. Chem. Clin. Biochem. 26: 1988; 469–475PubMedGoogle Scholar
  107. 106.
    Vorschlag zum Arzneibuch der DDR, 2. Ausg., Bestimmung der Aktivität der Cholinesterase in Serum. Zbl. Pharm. 119: 1980; 1293–1297Google Scholar
  108. 107.
    Alcini, D., M. Maroni, A. Colombi, D. Xaiz and V. Foa, Evaluation of a standardized European method for the determination of cholinesterase activity in plasma and erythrocytes. Med. Lavoro 79: 1988; 42–53Google Scholar
  109. 108.
    Deutsche Gesellschaft far Klinische Chemie, Proposal for standard methods for the determination of enzyme catalytic concentrations in serum and plasma at 37°C, II. Cholinesterase (acylcholine acylhydrolase, EC Eur. J. Clin. Chem. Clin. Biochem. 30: 1992; 163–170Google Scholar
  110. 109.
    Rama, D.B.K. and M. Deneys, Quality control of red blood cell cholinesterase estimations. South Mr. Med. J. 81: 1992; 530Google Scholar
  111. 110.
    Whittaker, M., J.W. Jones and J. Braven, Immunological studies of plasma cholinesterase during pregnancy and the puerperium. Clin. Chim. Acta 199: 1991; 223–230PubMedCrossRefGoogle Scholar
  112. 111.
    Lepage, L. F. Schiele, R. Gueguen and G. Siest, Total cholinesterase in plasma: Biological variations and reference limits. Clin. Chem. 31: 1985; 546–550PubMedGoogle Scholar
  113. 112.
    Brock, A., Immunoreactive plasma cholinesterase (EC substance concentration compared with cholinesterase activity concentration and albumin: Inter-and intra-individual variations in a healthy population group. J. Clin. Chem. Clin. Biochem. 28: 1990; 851–856PubMedGoogle Scholar
  114. 113.
    Pourrat, O., R. Robert, J.P. Neau, P. Deleplanque and D. Alcalay, Crises cholinergiques chez un myasthenique traité par échanges plasmatiques et anticholinesterasiques. Aim. Med. Int. 139: 1988; 51–52Google Scholar
  115. 114.
    Evans, R.T. and A. Robinson, The combined effects of pregnancy and repeated plasma exchange on serum cholinesterase activity. Acta anaesthesiol. Scand. 28: 1984; 44–46Google Scholar
  116. 115.
    Schuh, F.T., Pseudocholinesterase activity of human whole blood, bank blood and blood protein solutions. Anaesthesist 24: 1975; 103–106PubMedGoogle Scholar
  117. 116.
    Huizenga, J.R., K. van der Belt and C.H. Gips, The effect of storage at different temperatures on cholinesterase activity in human serum. J. Clin. Chem. Clin. Biochem. 23: 1985; 283–285PubMedGoogle Scholar
  118. 117.
    Balland, M., M. Vincent-Viry and J. Henny, Effect of long-term storage on human plasma cholinesterase activity. Clin. Chim. Acta 211: 1992; 129–131PubMedCrossRefGoogle Scholar
  119. 118.
    Braun, B.-E., R. Goes, M. Tryba, D. Huppe, H.-D. Kuntz and M. Krieg, Anstieg der CholinesteraseAktivitat bei Patienten mit dekompensierter Leberzirrhose nach Gabe von gerinnungsaktivem Frischplasma (FFP). Lab. med. 15: 1991; 485–489Google Scholar
  120. 119.
    Lovely, M.J., S.K. Patteson, F.J. Beuerlein and J.T. Chesney, Perioperative blood transfusion may conceal atypical pseudocholinesterase. Anest. Analg. 70: 1990; 326–327CrossRefGoogle Scholar
  121. 120.
    Puche, E., E. Gomez-Valverde, M- Garcia-Morillas, F. Jorde F. Fajardo and J.M. Garcia Gil, Postoperative decline in plasma aspirin-esterase and cholinesterase activity in surgical patients. Acta anaesthesiol. Scand. 37: 1993; 20–22Google Scholar
  122. 121.
    Burnett, W. and Y. Conen: Liver function after surgery: A study of 50 cases with particular reference to serum cholinesterase. Br. J. Anaesth. 27: 1955; 66–71PubMedCrossRefGoogle Scholar
  123. 122.
    Ryan, D.W., Postoperative serum cholinesterase activity following successful renal transplantation. Br. J. Anaesth. 51: 1979; 881–884PubMedCrossRefGoogle Scholar
  124. 123.
    Waterlow, J., Liver cholinesterase in malnourished infants. Lancet 1: 1950; 908–909PubMedCrossRefGoogle Scholar
  125. 124.
    Barclay, G.P.T., Pseudocholinesterase activity as a guide to prognosis in malnutrition. Am. J. Clin. Path. 59: 1973; 712–716PubMedGoogle Scholar
  126. 125.
    Venkataraman, B.V., J. Thangam, P.S. Shetty and P.M. Stephen, Cholinesterase in starvation. Ind. J. Physiol. Pharmacol. 26: 1982; 137–140Google Scholar
  127. 126.
    Foldes, F.F., Enzymes in Anesthesiology. Springer, New York, 1978, 107–131CrossRefGoogle Scholar
  128. 127.
    Jenike, M.A., M. Albert, L. Baer and J. Gunther, Oral physostigmine treatment for primary dementia: a double-blind placebo-controlled inpatient trial. J. Geriat. Psychiat. Neurol. 3: 1990; 13–16CrossRefGoogle Scholar
  129. 128.
    Volger, B.W., Alternatives in the treatment of memory loss in patients with Alzheimer’s disease. Clin. Pharm. 10: 1991; 447–456PubMedGoogle Scholar
  130. 129.
    Davis, K.L., L.J. Thai, E.R. Gamzu, C.S. Davis, R.F. Woolson, S.I. Gracon, D.A. Drachman, L.S. Schneider, P.J. Whitehouse, T.m. Hoover and the Tacrine Collaborative Study Group, A double-blind, placebo-controlled multicenter study of tacrine for Alzheimer’s disease. New Engl. J. Med. 327: 1992; 1253–1259Google Scholar
  131. 130.
    Mesulam, M.M. and C Goula, Shifting patterns of cortical cholinesterase in Alzheimer’s disease: implications for treatment, diagnosis, and pathogenesis. Adv. Neurol. 51: 1990; 235–240PubMedGoogle Scholar
  132. 131.
    Arendt, T., M.K. Brueckner, M. Lange and V. Bigl, Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease resemble embryonic development: a study of molecular forms. Neurochem. Int. 21: 1992; 381–396PubMedCrossRefGoogle Scholar
  133. 132.
    Wright, C.I., C. Guela and M.M. Mesulam, Protease inhibitors and indoleamines selectively inhibit cholinesterases in the histopathologic structures of Alzheimer disease. Proc. Nat. Acad. Sci. U.S.A. 90: 1993; 683–686CrossRefGoogle Scholar
  134. 133.
    Atack, J.R., C. May, J.A. Kaye, A.D. Kay and S.I. Rapoport, Cerebrospinal fluid cholinesterases in aging and in dementia of the Alzheimer type. Ann. Neurol. 23: 1988; 161–167PubMedCrossRefGoogle Scholar
  135. 134.
    Sirvioe, J. and P.J. Riekkinen, Brain and cerebrospinal fluid cholinesterases in Alzheimer’s disease, Parkinson’s disease and aging A critical review of clinical and experimental studies. J. Neur.Transmiss. 4: 1992; 337–358CrossRefGoogle Scholar
  136. 135.
    Bonham, J.R., G. Dale, D.J. Scott and J. Waggett, Diagnostic value of acetylcholinesterase/butyrylcholinesterase ratio in Hirschsprung’s disease. Am. J. Clin. Path. 90: 1988; 520–521PubMedGoogle Scholar
  137. 136.
    Rasmussen Loft, A.G., Determination of amniotic fluid acetylcholinesterase activity in the antenatal diagnosis of foetal malformations: The first ten years. J. Clin. Chem. Clin. Biochem. 28: 1990; 893–911Google Scholar
  138. 137.
    Kutty, K.M., R. Jain, S.N. Huang and K. Kean, Serum pseudocholinesterase:high density lipoprotein cholesterol ratio as an index of risk for cardiovascular disease. Clin. Chim. Acta 115: 1981; 55–61PubMedCrossRefGoogle Scholar
  139. 138.
    enschläger, G., M. Schrappe-Bächer, M. Steffen, B. Bürger and B. Allolio, Erhebung des Ernährungszustandes–ein Bestandteil der klinischen Routine-Diagnostik: Cholinesterase-Aktivität als Ernährungsindikator. Klirr. Wschr. 67: 1989; 1101–1107CrossRefGoogle Scholar
  140. 139.
    Novacek, G., H. Vogelsang, B. Schmidt and H. Lochs, Are single measurements of pseudocholinesterase and albumin markers for inflammatory activity or nutritional status in Crohn’s disease? Wien. Klirr. Wschr. 105: 1993; 111–115Google Scholar
  141. 140.
    Wellmann, W., R. Kubale, T.G.A. Nyman, J. Oestmann, E. Schmidt and F.W. Schmidt, Enzyme screening in inflammatory bowel disease: A preliminary report, in: Progress in Clinical Enzymology. D.M. Goldberg, M. Werner, eds. Masson, New York, 1980, 145–149Google Scholar
  142. 141.
    Tromm, A., D. Huppe, I. Thau, U. Schwegler, H.D. Kuntz, M. Krieg and B. May, Die Serumcholinesterase als Aktivitätsparameter bei chronisch entzündlichen Darmerkrankungen. Z. Gastroenterol. 30: 1992; 449–453PubMedGoogle Scholar
  143. 142.
    Schmidt, E. and F.W. Schmidt, Mitreaktionen der Leber bei systemischen Erkrankungen unter besonderer Berücksichtigung der Infektionen, in: Die Leber bei extrahepatischen Erkrankungen und Stoffwechselleiden. W. Tittor, G. Schwalbach, eds. Demeter, Gräfelfing 1984, 41–76Google Scholar
  144. 143.
    Guder, W.G., Anwendung von Bewertungsverfahren: Modell Lebererkrankungen, in: Validität klinisch-chemischer Befunde, H. Lang, W. Rick, H. Büttner, eds., Springer, Berlin, 1980, 84–91CrossRefGoogle Scholar
  145. 144.
    Schmidt, E. and F.W. Schmidt, Strategie-Probleme bei der Diagnostik von Lebererkrankungen, in: Strategien für den Einsatz klinisch-chemischer Untersuchungen, H. Lang, W. Rick, H. Büttner, eds. Springer, Berlin, 1982, 152–169Google Scholar
  146. 145.
    Lautz, H.U., E. Schmidt, F.W. Schmidt and M. Barthels, Korrelationen zwischen Einschränkung der Sekretionsleistung der Leber und dem Austritt von Zellenzymen. Z. Gastroenterol. 171979;99–105Google Scholar
  147. 146.
    Schmidt, E. and F.W. Schmidt, Enzyme diagnosis in diseases of the liver and the biliary system. Adv. Clin. Enzymol. 1: 1979; 239–292Google Scholar
  148. 147.
    Tinè, F. and L. Pagliaro, Cirrhosis and its recognition in asymptomatic subjects with aminotransferase elevation. Hepatology 11: 1990; 516–517PubMedCrossRefGoogle Scholar
  149. 148.
    Nomura, F., K. Olmishi, H. Koen, Y. Hiyama, T. Nakayama, Y. Itoh, K. Shirai, Y. Saitoh and K. Okuda, Serum cholinesterase in patients with fatty liver. J. Clin. Gastroenterol. 8: 1986; 599–602PubMedCrossRefGoogle Scholar
  150. 149.
    Hada, T., T. Ohue, H. Imanishi, H. Nakaoka, M. Fujikura, T. Yamamoto, Y. Amuro and K. Higashino, Alteration of serum cholinesterase isozyme in patients with liver cirrhosis. Clin. Chim. Acta 178: 1988; 111–112PubMedCrossRefGoogle Scholar
  151. 150.
    Schmidt, E. and F.W. Schmidt, Enzyme patterns in liver failure, in: Artificial Liver Support. G. Brunner, F.W. Schmidt, eds. Springer, Berlin, 1987, 8–17Google Scholar
  152. 151.
    Burghardt, M., A. Henze, U. Russmann, J. Lobers, E. Schmidt, F.W. Schmidt, On the prognosis of liver cirrhosis, in: Experimental and Clinical Hepatology. C.E. Broelsch, O. Zelder, eds. MTP Press, Lancaster, 1986, 80–88CrossRefGoogle Scholar
  153. 152.
    Schmidt, E., F.W. Schmidt S. Ohlendorf, R. Raupach, T. Wittig, C.E. Broelsch and R. Pichlmayr, Enzyme patterns in serum after liver transplantation, in: A. Burlina, L. Galzigna, eds. Clinical Enzymology Symposia 5. Piccin, Padua, 1986, 143–156Google Scholar
  154. 153.
    Irrgang, B., N. Adam, A. Schwab and F. Przybylski, Computer-supported decision making in liver diagnosis based on a graphical presentation of laboratory data. J. Clin. Chem. Clin. Biochem. 28: 1990; 733Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Ellen
    • 1
  • Friedrich Werner Schmidt
    • 1
  1. 1.Isernhagen NBGermany

Personalised recommendations