Lipoprotein Lipase Activity in the Pathological Metabolism of Lipoproteins

  • Paul N. Durrington
Part of the NATO ASI Series book series (NSSA, volume 266)


Many of the clinical features of defective lipoprotein lipase activity were known well before the present century, particularly the milky appearance of serum. This was as the result of the use of venesection as a means of treatment of such disorders as abdominal pain, diabetes, alcoholism, and glomerulonephritis (reference 1 cites many early reports). The syndrome of familial lipoprotein deficiency (FLLD) was not, however, first clearly described until the 1930’s [2, 3]. Havel and Gordon first showed that its basis was defective lipoprotein lipase activity [4]. Only recently has it also been appreciated that a similar syndrome can result from a defect in apolipoprotein CII, the circulating activator of lipoprotein lipase [5]. Lipoprotein lipase deficiency with an autoimmune basis has also been described [6].


Acute Pancreatitis Cholesteryl Ester Cholesteryl Ester Transfer Protein Hepatic Lipase Familial Hypercholesterolaemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fisher B. Uber lipamie und cholesteremie, sowie uber des pancreas und der leber bei diabetes mellitus. Virchow’s Archiv. 172: 1903; 3071.Google Scholar
  2. 2.
    Burger M., Grutz 0. Uber hepatosplenomegale lipoidose mit xanthomatosen veranderunger in haut un schleimhaut. Archive. Dermatol Syph 166: 1932; 542–475.Google Scholar
  3. 3.
    Holt L.E., Aylward F.X. Timbres H.G. Idiopathic familial lipaemia. John Hopkins Hosp. Bull 64: 1939; 279–314.Google Scholar
  4. 4.
    Havel R.J., Gordon R. J. Idiopathic hyperlipidaemia. Metabolic studies in an affected family. J. Clin. Invest. 39: 1960; 1777–1790.PubMedCrossRefGoogle Scholar
  5. 5.
    Breckenridge W.C., Little A., Steiner G., Chow A. Poapst M. Hypertriglyceridaemia associated with deficiency of apolipoprotein C-II. N. Engl. J. Med. 298: 1978; 1265–1273.PubMedCrossRefGoogle Scholar
  6. 6.
    Glueck C.J., Kaplan A.P., Levy R.I., Greten H., Gralnick H.,Fredrickson D.S. A new mechanism of exogenous hypertriglyceridaemia. Ann. Int. Med. 7: 1969; 1051–1057.Google Scholar
  7. 7.
    Babirak S.P., Iverius P-H., Fjimoto W.Y., Brunzell J.D. Detection and characterisation of the heterozygote state for lipoprotein lipase deficiency. Arteriosclerosis 9: 1989; 326–334.PubMedCrossRefGoogle Scholar
  8. 8.
    Hayden M., De Braekeleer M., Henderson H.E., Kastelein J. Molecular geography of inherited disorders of lipoprotein metabolism: lipoprotein lipase deficiency and familial hypercholesterolaemia in Molecular Genetics of Coronary Artery Disease. Candidate Genes and Processes in Atherosclerosis. Lewis A.J., Rotter J.I., Sparkes R.S. eds., Monogr. Hum. Genet. Karger, Basel 14: 1992; 350–362.Google Scholar
  9. 9.
    Demant T., Gaw A., Watts G.F. et al Metabolism of apo B-100-containing lipoproteins in familial hyperchylomicronaemia. J. Lipid. Res. 34: 1993; 147–156.PubMedGoogle Scholar
  10. 10.
    Durrington P.N. Hypertriglyceridaemia. Chapter 7 in Hyperlipidaemia. Diagnosis and Management. Wright, London 1989; 135–156.Google Scholar
  11. 11.
    Havel R.J. Pathogenesis differentiation and management of hypertriglyceridaemia. Adv. Intern. Med. 15: 1969; 117–154.PubMedGoogle Scholar
  12. 12.
    Braganza J.M. Pancreatic disease: a casualty of hepatic ‘detoxification’? Lancet ii: 1983; 1000–1002.Google Scholar
  13. 13.
    Durrington P.N., McIver J.E., Holdsworth G., Galton D.J. Severe hypertriglyceridaemia associated with pancytopenia and lipoprotein lipase deficiency. Ann. Int. Med. 94: 1981; 211–212.CrossRefGoogle Scholar
  14. 14.
    Bengtsson-Olivecrona G., Olivecrona T. Assay of lipoprotein lipase and hepatic lipase Chapter 7a in Lipoprotein Analysis: A Practical Approach. Converse C.A., Skinner E.R. eds. Oxford University Press, Oxford, 1993; 169–185.Google Scholar
  15. 15.
    Zambon A., Torres A., Bijouet S., Gange C., Moorjani S., Lupien P.J., Hayden M.R., Brunzell J.D. Prevention of raised ‘low-density’ lipoprotein cholesterol in a patient with familial hypercholesterolaemia and lipoprotein lipase deficiency. Lancet 341: 1993; 119–1121CrossRefGoogle Scholar
  16. 16.
    Mitropoulos K.A., Miller G.J., Watts G.F., Durrington P.N. Lipolysis of triglyceride-rich lipoproteins activates coagulant factor XII: a study in familial lipoprotein-lipase deficiency. Atherosclerosis 95: 1992; 119–125.PubMedCrossRefGoogle Scholar
  17. 17.
    Meade T.W., Mellows S.M., Brozovic M. et al Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study. Lancet ií: 1986; 533–537.Google Scholar
  18. 18.
    Brown M.S., Herz J., Kowal R.C., Goldstein J.L. The low-density lipoprotein receptor-related protein: double agent or decoy ? Curr. Opin. Lipidol. 2: 1991; 65–72.CrossRefGoogle Scholar
  19. 19.
    Beisiegel U. Apolipoproteins as ligands for lipoprotein receptors. Chapter 10 in Structure and Function of Apolipoproteins ed Rosseneu M. CRC Press Inc. Boca Raton 1992; 269–294.Google Scholar
  20. 20.
    Karpe F., Olivecrona T., Walldius G., Hamsten A. Lipoprotein lipase in plasma after an oral fat load: relation to free fatty acids. J. Lipid Res. 33: 1992; 975–984.PubMedGoogle Scholar
  21. 21.
    Pykolisto O.J., Smith P.H., Brunzell J.D. Determinants of human adipose tissue lipoprotein lipase: effects of diabetes and obesity on basal and diet induced activity J. Clin. Invest. 56: 1975; 1108 1117.Google Scholar
  22. 22.
    Auwerx J.H., Babirak S.P., Hopkanson J.E., Stahnke G., Will H., Deeb S.S., Brunzell J.D. Coexistance of abnormalities of hepatic lipase and lipoprotein lipase in a large family. Am. J. Hum. Genet. 46: 1990; 470–477.PubMedGoogle Scholar
  23. 23.
    Durrington P.N., Twentyman O.P., Braganza J.M., Miller J.P. Hypertriglyceridaemia and abnormalities of triglyceride catabolism persisting after pancreatitis. Int. J. Pancreatol. 1: 1986; 195–203.Google Scholar
  24. 24.
    Huttunen J.K., Ehnholm C., Kekki M., Nikkila E.A. Post-heparin lipoprotein lipase and hepatic lipase in normal subjects and in patients with hypertriglyceridaemia: correlations to sex, age and various parameters of triglyceride metabolism. Clin. Sci. Mol. Med. 50: 1976; 249–260.PubMedGoogle Scholar
  25. 25.
    Krauss R.M., Levy R.I., Fredrickson D.S. Selective measurement of two lipase activities in postheparin plasma from normal subjects and patients with hyperlipoproteinaemia. J. Clin. Invest. 54: 1974; 1107–1124.PubMedCrossRefGoogle Scholar
  26. 26.
    Wojciechowski A.P., Farrall M., Cullen P. et al Familial combined hyperlipidaemia linked to the apolipoprotein AI-CIII-AIV gene cluster on chromosome 11823-q24. Nature 349: 1991; 161–164.PubMedCrossRefGoogle Scholar
  27. 27.
    Hulley S.B., Rosenman R.H., Bawol R.D., Braid R.J. Epidemiology as a guide to clinical decision. The association between triglyceride and coronary heart disease. N. Engl. J. Med. 302: 1980; 1383–1389.PubMedCrossRefGoogle Scholar
  28. 28.
    Huttunen J.K., Manninen V., Tenkanen L., Heinonen O.P., Koskinen P., Frick M.H. Drug induced changes in HDL-cholesterol and coronary heart disease. Experinnces from the Helsinki Heart Study in High Density Lipoproteins and Atherosclerosis II Miller N.E. Ed, Excerpta Medica, Amsterdam 1989, 191–198.Google Scholar
  29. 29.
    Neary R., Bhatnagar D., Durrington P.N., Ishola M., Arrol S., Mackness M.I. An investigation of the role of lecithin: cholesterolacyl transferase and triglyceride-rich lipoproteins in the metabolism of pre-beta high density lipoproteins. Atherosclerosis 89: 1991; 35–48.PubMedCrossRefGoogle Scholar
  30. 30.
    Ruys T., Sturgess I., Shaikh M., Watts G.F., Nordestgaard B.G., Lewis B. Effects of exercise and fat ingestion on high density lipoprotein production by peripheral tissues. Lancet 334: 1989; 1119–1121.CrossRefGoogle Scholar
  31. 31.
    Editorial. Cholesteryl ester transfer protein. Lancet; 338: 1991, 666–667CrossRefGoogle Scholar
  32. 32.
    Bhatnagar D., Durrington P.N., Channon K.M., Prais H., Mackness M.I. Increased transfer of cholesteryl esters from high density lipoproteins to low density and very low density lipoproteins in patients with angiographic evidence of coronary artery disease. Atherosclerosis 98: 1992; 25–32.CrossRefGoogle Scholar
  33. 33.
    Bhatnagar D., Durrington P.N., Mackness M.I., Arrol S., Winocour P.H., Prais H. Effects of treatment of hypertriglyceidaemia with gemfibrozil on serum lipoproteins and the transfer of cholesteryl ester from high density lipoproteins to low density lipoproteins. Athersclerosis 92: 1992; 49–57CrossRefGoogle Scholar
  34. 34.
    Taylor T.G., Holdsworth G., Galton D.J. Clofibrate increases lipoprotein-lipase activity in adipose tissue of hypertriglyceridaemic patients. Lancet 11: 1977; 1106–1107.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Paul N. Durrington
    • 1
  1. 1.Department of Medicine Manchester Royal InfirmaryUniversity of ManchesterManchesterUK

Personalised recommendations