Skip to main content

Interactions between Pesticides and Esterases in Humans

  • Chapter

Part of the book series: NATO ASI Series ((NSSA,volume 266))

Abstract

The toxicity of many pesticides is dependent upon their interaction with various types of esterase. Indeed esterases have an important role in determining the selective toxicity of certain insecticides [1–3]. A particular case of this is the development of resistance to insecticides by insects. For example, strains of the aphid Myzus persicae which are resistant to organophosphorus insecticides (ops), have very high levels of a carboxylesterase, which can detoxify the active oxon forms of these compounds [4,5].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Walker, C.H. and Oesch, F.. Enzymes and selective toxicity, in: “Biological Basis of Detoxification”, J. Caldwell and W.B. Jakoby, eds., Academic Press (1983).

    Google Scholar 

  2. Mackness, M.I., Thompson, H.M., Hardy, A.R. and Walker, C.H. Distinction between ‘A’ esterases and arylesterases. Biochem. J. 245: 1987; 293–296.

    PubMed  CAS  Google Scholar 

  3. Brooks, G.T.. Pathways of enzymatic degradation of pesticides. Environmental Quality and Safety No 1,1972; 106–163. George Thieme/Academic Press.

    Google Scholar 

  4. Devonshire, A.L. The properties of a carboxylesterase from the peach-potato applied Myzus persicae, and its role in conferring insecticides resistance. Biochem. J. 167: 675–683.

    Google Scholar 

  5. Devonshire, A.L. Role of esterases in resistance of insects to insecticides. Biochem. Soc. Trans. 19: 1991; 755–759.

    PubMed  CAS  Google Scholar 

  6. Aldridge, W.N. Serum esterases I. Biochem. J. 53: 1953; 110–117.

    CAS  Google Scholar 

  7. Walker, C.H. The classification of esterases which hydrolyse organophosphates: recent developments. Chem Biol. Inter. 87: 1993; 17–24.

    Article  CAS  Google Scholar 

  8. Furlong, C.E., Richter, R.J., Chapline, J. and Crabb, W.C. Purification of rabbit and human serum paraoxonase. Biochemistry 30: 1991; 10133–10140.

    Article  PubMed  CAS  Google Scholar 

  9. Gan, K.N., Smolen, A., Eckerson, H.W. and La Du, B. N. Purification of human serum paraoxonase/arylesterase. Evidence for one esterase catalysing both activities. Drug. Metab. Dispos. 19: 1991; 100.

    PubMed  CAS  Google Scholar 

  10. Brealey, C.J., Walker, C.H. and Baldwin, B.C. ‘A’ esterase activities in relation to the differential toxicity of pirimiphos methyl to birds and mammals. Pestic. Sci. 11: 1980; 546–554.

    Article  CAS  Google Scholar 

  11. Walker, C.H., Brealey, C.J., Mackness, M.I. and Johnston, G. Toxicity of pesticides to birds; the enzymic factor. Biochem. Soc. Trans. 19: 1991; 741–745.

    PubMed  CAS  Google Scholar 

  12. Machin, A.F., Anderson, P.H., Quick, M.P., Waddell, D.R., Skibniewska, K.A. and Howells, L.C. The metabolism of diazinon in the liver and blood of species of varying susceptibility to diazinon poisoning. Xenobiotica 1: 1976; 104.

    Google Scholar 

  13. Geldmacher von Mallinckrodt, M. and Diepgen, T.L.. Human serum paraoxonase–polymorphism classification, in: Enzymes hydrolysing organophosphorus compounds. E. Reiner, W.N. Aldridge and F.C.G. Hoskin, eds., Ellis Horwood, Chichester, 1989; pp. 15–29.

    Google Scholar 

  14. Mackness, M.I. Possible medical significance of human serum ‘A’ esterases, in: Enzymes hydrolysing organophosphorus compounds. E. Reiner, W.N. Aldridge and F.C.G. Hoskin, eds., 1989; pp. 202–213.

    Google Scholar 

  15. Mackness, M.I. ‘A’ esterases: enzymes looking for a role? Biochem. Pharmac. 38: 1989; 385–390.

    Article  CAS  Google Scholar 

  16. Hoskin, F.C.G., Chettur, G., Mainer, S., Steinmann, K.E., De Frank, J.J., Galo, B.J., Robbins, F.M. and Walker, J.E. Soman hydrolysis and detoxification by a thermophilic bacterial enzyme, in: Enzymes hydrolysing organphosphorus compounds. E. Reiner, W.N. Aldridge and F.C.G. Hoskin, eds., Ellis Horwood, Chichester, 1988; pp 53–64.

    Google Scholar 

  17. Broomfield, C., Little, J., Lenz, D. and Ray, R. Organophosphorus acid anhydride hydrolases that lack chiral specificity, in: Enzymes hydrolysing organophosphorus compounds. E. Reiner, W.N. Aldridge and F.C.G. Hoskin, eds., Ellis Horwood, Chichester, 1989; pp 79–89.

    Google Scholar 

  18. de Jong, P.A., Van Pijk, P. and Benshop, H.C. Stereoselective hydrolysis of soman and other chiral organophosphates by mammalian phosphorylphosphatases, in: Enzymes hydrolysing organphosphorus compounds. E. Reiner, W.N. Aldridge and F.C.G. Hoskin, eds., Ellis Horwood, Chichester, 1989; pp 65–78.

    Google Scholar 

  19. De Bissdorp, C.J.J.V., Quaeyhaegens, F.J.L. and Van Stockens, M.A.H. Degradation of soman in sera of some large domestic mammals including man. in: Enzymes hydrolysing organophosphorus compounds. E. Reiner, W.N. Aldridge and F.C.G. Hoskin, eds., Ellis Horwood, Chichester, 1989; pp 98–107.

    Google Scholar 

  20. Mentlein, R., Ronai, A., Robbi, M., Heymann, E. and Deimling, O.V. Genetic identification of rat liver carboxylesterases isolated in different laboratories. Biochem. Biophys. Acta 913: 1987; 27–38.

    Article  PubMed  CAS  Google Scholar 

  21. Hosokawa, M., Maki, T. and Satoh, T. Multiplicity and regulations of hepatic microsomal carboxylesterases in rats. Mol. Pharmacol. 31: 1987; 579–584.

    PubMed  CAS  Google Scholar 

  22. Hosokawa, M., Maki, T. and Satoh, T. Characterisation of molecular species of liver microsomal carboxylesterases of several animal species and human. Arch. Biochem. Biophys. 277: 1990; 219–227.

    Article  PubMed  CAS  Google Scholar 

  23. Ketterman, A.J., Bowles, M.R. and Pond, S.M. Purification and characterisation of human liver carboxylesterases. Int. J. Biochem. 21: 1989; 1303–1312.

    Article  PubMed  CAS  Google Scholar 

  24. Ketterman, A.J. Polymorphism of human liver carboxylesterase. Biochem. Soc. Trans. 19: 1991; 306S.

    PubMed  CAS  Google Scholar 

  25. Sterri, S.H. and Fonnum, F. Carboxylesterase–the soman scavenger on rodents: homogeneity and hormone influence, in: Clinical and Experimental Toxicology of Organophosphates and Carbamates, B. Ballantyne, T.C. Morris, eds., Butterworth Heinemann, 1989; 155–164.

    Google Scholar 

  26. Suzuki, T. and Miyamoto, J. Purification and properties of pyrethroid carboxylesterases in rat liver microsomes. Pestic. Biochem. Physiol. 8: 1978; 186–198.

    Article  CAS  Google Scholar 

  27. Walker, C.H., Smith, G. and Wolf, C.R. Unpublished results.

    Google Scholar 

  28. Johnson, M.K.. The delayed neuropathy caused by some organophosphorus esters: mechanisms and challenge. Crit. rev. Toxicol. 3: 1975; 289–316.

    Article  CAS  Google Scholar 

  29. Johnson, M.K. Molecular events in delayed neuropathy: experimental aspects of neuropathy target esterase, in: Clinical and Experimental Toxicology of Organophosphates and Carbamates, B. Ballantyne, T.C. Morris, eds., Butterworth Heinemann, 1992; 90–114.

    Google Scholar 

  30. Johnson, M.K. Anomalous biochemical responses in tests of delayed neuropathic potential of methamidophos, its resolved isomers and of some higher 0-alkyl homologues. Arch. Toxicol. In press (1992).

    Google Scholar 

  31. Duncan, R.C. and Griffith, J. Screening of agricultural workers for exposure to anticholinesterases, in: Clinical and Experimental Toxicology of Organophosphates and Carbamates, B. Ballantyne, T.C. Morris, eds., Butterworth Heinemann, 29: 1992; 421–429.

    Google Scholar 

  32. Thompson, H.M., Walker, C.H. and Hardy, A.R. Avian esterases as indicators of exposure to pesticides–the factor of diurnal variation. Bull. Environ. Contain. Toxicol. 41: 1988; 4–11.

    Article  CAS  Google Scholar 

  33. Thompson, H.M. and Walker, C.H. Blood esterases as indicators of exposure to organophosphorus and carbamate insecticides, in: Proceedings of International Meeting ‘Non Destructive Biomarkers in Vertebrates’, M.C. Fossi, C. Leonzio, Lewis Publications, 1993; 35–60.

    Google Scholar 

  34. Walker, C.H. Biochemical responses as indicators of toxic effects of chemicals in ecosystems. Toxicol. Letts. 1992; 527–533.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walker, C.H. (1994). Interactions between Pesticides and Esterases in Humans. In: Mackness, M.I., Clerc, M. (eds) Esterases, Lipases, and Phospholipases. NATO ASI Series, vol 266. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0993-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0993-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0995-4

  • Online ISBN: 978-1-4899-0993-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics