Skip to main content

The Regulation and Function of p21Ras in Signal Transduction by the T Cell Antigen Receptor

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 365))

Abstract

T lymphocyte activation is initiated by triggering of the T cell antigen receptor (TCR). The TCR is a multichain complex comprising a disulfide-linked heterodimer of the idiotypic αβ chains noncovalently associated with a signal transduction complex composed of the invariant CD3 γ, δ, ϵ chains and the ζ (16 kDa) and η (22 kDa) subunits.1–3 The cytoplasmic domains of the CD3 and ζ subunits are crucial for TCR coupling to intracellular PTKs which is absolutely required for all subsequent T cell responses.4–8 PTKs are known to couple the TCR to an inositol lipid specific phospholipase C, PLCγ19 thus enabling the TCR to regulate the hydrolysis of membrane phosphoinositides (PtdIns), in particular phosphatidylinositol (4,5)-biphosphate (PtdIns(4,5P2), liberating inositol (1,4,5)-triphosphate(Ins(1,4,5)P3) and 1,2-diacylglycerol (DAG). Ins(1,4,5)P3 releases Ca2+ from the endoplasmic reticulum which results in an initial rapid rise in the concentration of intracellular Ca2+; DAG is known to activate the serine/threonin kinase, protein kinase C (PKC).10–12

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Reth, Antigen receptor tail clue, Nature 338:383 (1989).

    Article  PubMed  CAS  Google Scholar 

  2. A.M. Weissman, J.S. Bonifacino, R.D. Klausner, L.E. Samelson, and J.J. O’Shea, T cell antigen receptor: structure, assembly and function. Year Immunol. 4:74 (1989).

    PubMed  CAS  Google Scholar 

  3. A. Weiss, T cell antigen receptor signal transduction: a tale of tails and cytoplasmic protein-tyrosine kinases, Cell 73:209 (1993).

    Article  PubMed  CAS  Google Scholar 

  4. C.H. June, M.C. Fletcher, J.A. Ledbetter, G.L. Schieven, J.N. Siegel, A.F. Phillips, and L.E. Samelson, Inhibition of tyrosine phosphorylation prevents T cell receptor-mediated signal transduction, Proc. Natl. Acad. Sci. U.S.A. 87:7722 (1990).

    Article  PubMed  CAS  Google Scholar 

  5. R.D. Klauser and L.E. Samelson, T cell antigen receptor activation pathways: the tyrosine kinase connection, Cell 64:875 (1991).

    Article  Google Scholar 

  6. C.E. Rudd, CD4, CD8 and the TCR-CD3 complex: a novel class of protein-tyrosine kinase receptors, Immunol. Today 11:400 (1990).

    Article  PubMed  CAS  Google Scholar 

  7. L.E. Samelson, A.F. Phillips, E.T. Luong, and R.D. Klausner, Association of the fyn protein-tyrosine kinase with the T-cell antigen receptor, Proc. Natl. Acad. Sci. U.S.A. 87:4358 (1990).

    Article  PubMed  CAS  Google Scholar 

  8. A.C. Chan, M. Iwashima, C.W. Turck, and A. Weiss, Zap 70: A 70kd protein tyrosine that associates with the TCR zeta chain, Cell 71:649 (1992).

    Article  PubMed  CAS  Google Scholar 

  9. A. Weiss, G. Koretzky, R.C. Schatzmann, and T. Kadlecec, Functional activation of the T cell antigen receptor induces tyrosine phosphorylation of phospholipase C gamma 1, Proc. Natl. Acad. Sci. U.S.A. 88:5484 (1991).

    Article  PubMed  CAS  Google Scholar 

  10. M.J. Berridge and R.F. Irvine, Inositol phosphates and cell signalling, Nature 341: 197 (1989).

    Article  PubMed  CAS  Google Scholar 

  11. Y. Nishizuka, The molecular heterogeneity of protein kinase C and its implication for cellular regulation, Nature 334:661 (1988).

    Article  PubMed  CAS  Google Scholar 

  12. N. Berry and Y. Nishizuka, Protein kinase C and T cell activation, Eur. J. Biochem. 89:205 (1989).

    Google Scholar 

  13. J. Downward, J.D. Graves, P.H. Warne, S. Rayter, and D.A. Cantrell, Stimulation of p21ras upon T-cell activation, Nature 346:719 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. J. Downward, J.D. Graves, and D.A. Cantrell, The regulation and function of p21ras in T lymphocytes, Immunol. Today 13:92 (1992).

    Article  Google Scholar 

  15. T. Satoh, M. Nafakuku, and Y. Kaziro, Function of Ras as a molecular switch in signal transduction, J. Biol Chem. 267:24149 (1992).

    PubMed  CAS  Google Scholar 

  16. M. Izquierdo, J. Downward, J.D. Graves, and D.A. Cantrell, Role of protein kinase C in T-cell antigen receptor regulation of p21ras: evidence that two p21ras regulatory pathways coexist in T cells, Mol. Cell. Biol. 12:3305 (1992).

    PubMed  CAS  Google Scholar 

  17. D.A. Cantrell, M.K. Collins, and M.J. Crumpton, Autocrine regulation of T-lymphocyte proliferation: differential induction of IL-2 and IL-2 receptor, Immunology 65:343 (1988).

    PubMed  CAS  Google Scholar 

  18. A. Weiss and J.B. Imboden, Cell surface molecules and early events involved in human T lymphocyte activation, Adv. Immunol. 41:1 (1987).

    Article  PubMed  CAS  Google Scholar 

  19. C.T. Baldari, G. Macchia, and J.L. Telford, Interleukin-2 promoter activation in T cells expressing activated Ha-ras, J. Biol. Chem. 267:4289 (1992).

    PubMed  CAS  Google Scholar 

  20. S. Rayter, M. Woodrow, S.C. Lucas, D. Cantrell, and J. Downward, p21ras mediates control of IL2 gene promoter function in T cell activation, EMBO J. 11:4549 (1992).

    PubMed  CAS  Google Scholar 

  21. M. Woodrow, S. Rayter, J. Downward, and D.A. Cantrell, p21ras function is important for T cell antigen receptor and protein kinase C regulation of nuclear factor of activated cells, J. Immunol. 150:1 (1993).

    Google Scholar 

  22. W.M. Flanagan, B. Corthésy, R.J. Bram, and G.R. Crabtree, Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A, Nature 352:803 (1991).

    Article  PubMed  CAS  Google Scholar 

  23. J. Jain, P.G. McCaffrey, V.E. Valge-Archer, and A. Rao, Nuclear factor of activated T cells contains Fos and Jun, Nature 356:801 (1992).

    Article  PubMed  CAS  Google Scholar 

  24. J.P. Northrop, K.S. Ullman, and G.R. Crabtree, Characterisation of the nuclear and cytoplasmic components of the lymphoid-specific nuclear factor of activated T cells (NFAT) complex, J. Biol Chem. 268:22917 (1993).

    Google Scholar 

  25. L.H. Boise, B. Petryniak, X. Mao, C.H. June, C.Y. Wang, T. Lindsten, R. Bravo, K. Kovary, J.M. Leiden, and C.B. Thompson, The NFAT-1 DNA binding complex in activated T cells contains Fra-1 and Jun-B, Mol. Cell. Biol. 113:1911 (1993).

    Google Scholar 

  26. S.L. Schreiber and G.R. Crabtree, The mechanism of action of cyclosporin A and FK506, Immunol Today 13:136 (1992).

    Article  PubMed  CAS  Google Scholar 

  27. N.A. Clipstone and G.R. Crabtree, Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation, Nature 357:695 (1992).

    Article  PubMed  CAS  Google Scholar 

  28. S.J. O’Keefe, J. Tamura, R.L. Kincaid, M.J. Tocci, and E.A. O’Neill, FK-506 and Cs-A-sensitive activation of the interleukin-2 promoter by calcineurin, Nature 357:692 (1992).

    Article  PubMed  Google Scholar 

  29. M. Woodrow, N. Clipstone, and D. A. Cantrell, p21ras and calcineurin synergise to regulate NFAT, J. Exp. Med. 178: 1517 (1993).

    Article  PubMed  CAS  Google Scholar 

  30. B. Binetruy, T. Smeal, and M. Karin, Ha-ras augments c-jun activation and stimulates phosphorylation of its activation domains, Nature 251:122 (1991).

    Article  Google Scholar 

  31. T. Smeal, B. Binetruy, D.A. Mercola, M. Birrer, and M. Karin, Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73, Nature 354:494 (1991).

    Article  PubMed  CAS  Google Scholar 

  32. T. Hunter and M. Karin, The regulation of transcription by phosphorylation, Cell 70: 375 (1992).

    Article  PubMed  CAS  Google Scholar 

  33. S.J. Leevers and C.J. Marshall, MAP kinase regulation—the oncogene connection, Trends. Cell. Biol. 2:283 (1992).

    Article  PubMed  CAS  Google Scholar 

  34. D.J. Robbins, M. Cheng, E. Zhen, C.A. Vanderbilt, L.A. Feig, and M.H. Cobb, Evidence for a Ras-dependent extracellular signal-regulated protein kinase (ERK) cascade, Proc. Natl Acad. Sci. U.S.A. 89:6924 (1992).

    Article  PubMed  CAS  Google Scholar 

  35. S.M. Thomas, M. DeMarco, G. D’Arcangelo, S. Halegoua, and J.S. Brugge, Ras is essential for nerve growth factor and phorbol ester-induced tyrosine phosphorylation of MAP kinases, Cell 68:1031 (1992).

    Article  PubMed  CAS  Google Scholar 

  36. S.L. Pelech and J.S. Sanghera, MAP kinases: charting the regulatory pathways, Science 257:1355 (1992).

    Article  PubMed  CAS  Google Scholar 

  37. A.E. Nel, C. Hanekon, and L. Hultin, Protein kinase C plays a role in the induction of tyrosine phosphorylation of lymphoid microtubule-associated protein-2 kinase. Evidence for a CD3-associated cascade that includes p561ck and that is defective in HPB-ALL, J. Immunol. 147:1933 (1991).

    PubMed  CAS  Google Scholar 

  38. C.E. Whitehurst, T.G. Boulton, M.H. Cobb, and T.G. Geppert, Extracellular signal-related kinases in T cells. Anti-CD3 and 4-beta-phorbol 12-myristate 13-acetate induced phosphorylation and activation, J. Immunol. 148:3230 (1992).

    PubMed  CAS  Google Scholar 

  39. M. Izquierdo, S.J. Leevers, C.J. Marshall, and D.A. Cantrell, p21ras couples the T cell antigen receptor to extracellular signal-related kinase 2 in T lymphocytes, J. Exp. Med. 178:1199 (1993).

    Article  PubMed  CAS  Google Scholar 

  40. B.J. Pulverer, J.M. Kyriakis, J. Avruch, E. Nikolakaki, and J.R. Woodgett, Phosphorylation of c-jun mediated by MAP kinases, Nature 353:670 (1991).

    Article  PubMed  CAS  Google Scholar 

  41. R. Marais, J. Wynne, and R. Treisman, The SRF accessory protein ELK-1 contains a growth factor-regulated transcriptional activation domain, Cell 73:381 (1993).

    Article  PubMed  CAS  Google Scholar 

  42. A. Seth, F.A. Gonzalez, S. Gupta, D.L. Raden, and R.J. Davis, Signal transduction within the nucleus by mitogen-activated protein kinase, J. Biol. Chem. 34:24796 (1992).

    Google Scholar 

  43. J. Downward, Regulation of p21ras by GAPs and guanine nucleotide exchange proteins in normal and oncogenic cells, Curr. Opin. Genet. Dev. 2:13 (1992).

    Article  PubMed  CAS  Google Scholar 

  44. F. McCormick, ras GTPase activating protein: signal transmitter and signal terminator, Cell 56:5 (1989).

    Article  PubMed  CAS  Google Scholar 

  45. R. Ballester, D. Marchuk, M. Boguski, A. Saulino, R. Letcher, M. Wigler, and F. Collins, The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins, Cell 63: 851 (1990).

    Article  PubMed  CAS  Google Scholar 

  46. C. Shou, C.L. Farnsworth, B.G. Neel, and L.A. Feig, Molecular cloning of cDNAs encoding a guanine-nucleotide-releasing factor for Ras p21, Nature 358:351 (1992).

    Article  PubMed  CAS  Google Scholar 

  47. D. Bowtell, P. Fu, M. Simon, and P. Senior, Identification of murine homologues of the Drosophilia Son of Sevenless gene: potential activators of ras, Proc. Natl. Acad. Sci. U.S.A. 89:6511 (1992).

    Article  PubMed  CAS  Google Scholar 

  48. E. Gulbins, K.M. Coggeshall, G. Baier, S. Katzav, P. Burn, and A. Altman, Tyrosine kinase stimulated guanine nucleotide exchange of Vav in T cell activation, Science 260:822 (1993).

    Article  PubMed  CAS  Google Scholar 

  49. J.M. Adams, H. Houston, J. Allen, T. Lints, and R. Harvey, The hematopoietically expressed vav proto-oncogene shares homology with the dbl GDP-GTP exchange factor, the bcr gene and a yeast gene (CDC24) involved in cytoskeletal organization, Oncogene 7:611 (1992).

    PubMed  CAS  Google Scholar 

  50. J.D. Graves, J. Downward, S. Rayter, P. Warne, A.L. Tutt, M. Glennie, and D.A. Cantrell, CD2 antigen mediated activation of the guanine nucleotide binding proteins p21ras in human T lymphocytes, J. Immunol. 146:3709 (1991).

    PubMed  CAS  Google Scholar 

  51. M. Izquierdo, J. Downward, W.J. Leonard, H. Otani, and D.A. Cantrell, IL-2 activation of p21ras in murine myeloid cells transfected with human IL-2 receptor beta chain, Eur. J. Immunol. 22:817 (1992).

    Article  PubMed  CAS  Google Scholar 

  52. R.H. Medema, A.M.M. Vries-Smits, G.C.M. van der Zon, J.A. Maassen, and J.L. Bos, Ras activation by insulin and epidermal growth factor through enhanced exchange of guanine nucleotides on p21ras, Mol. Cell. Biol. 13:155 (1993).

    PubMed  CAS  Google Scholar 

  53. L. Buday and J. Downward, Epidermal growth factor regulates the exchange rate of guanine nucleotides on p21ras in fibroblasts, Mol. Cell. Biol. 13:1903 (1993).

    PubMed  CAS  Google Scholar 

  54. L. Buday and J. Downward, Epidermal grwoth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein and Sos nucleotide exchange factor, Cell 73:611 (1993).

    Article  PubMed  CAS  Google Scholar 

  55. S.E. Egan, B.W. Giddings, M.W. Brooks, L. Buday, A.M. Sizeland, and R.E. Weinberg, Association of SOS Ras exchange protein with GRB2 is implicated in tyrosine kinase signal transduction and transformation, Nature 363:45 (1993).

    Article  PubMed  CAS  Google Scholar 

  56. F. McCormick, How receptors turn Ras on, Nature 363:15 (1993).

    Article  PubMed  CAS  Google Scholar 

  57. K. Matuoka, M. Shibata, A. Yamakawa, and T. Takenawa, Cloning of ASH, a ubiquitous protein composed of one src homology region (SH)2 and two SH3 domains from human and rat cDNA libraries, Proc. Natl. Acad. Sci. U.S.A. 89:9015 (1992).

    Article  PubMed  CAS  Google Scholar 

  58. E.J. Lowenstein, R.J. Daly, A.G. Batzer, W. Li, B. Margolis, R. Lammers, A. Ullrich, and J. Schlessinger, The SH2 and SH3 containing protein Grb-2 links receptor tyrosine kinases to ras signaling, Cell 70:431 (1992).

    Article  PubMed  CAS  Google Scholar 

  59. M. Rozakis-Adcock, R. Fernley, S. Wade, T. Pawson, and D. Bowtell, The SH2 and SH3 domains of mammalian Grb-2 couple the EGF receptor to the Ras activator mSOS, Nature 363: 83 (1993).

    Article  PubMed  CAS  Google Scholar 

  60. M. Rozakis-Adcock, J. McGlade, G. Mbamalu, G. Pelicci, R. Daley, W. Li, A. Batzer, S. Thomas, J. Brugge, P.G. Pelicci, et al., Association of the Shc and Grb2/Sem5-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases, Nature 360:689 (1992).

    Article  PubMed  CAS  Google Scholar 

  61. G. Pelicci, L. Lanfrancone, F. Grignani, J. McGlade, F. Cavallo, G. Forni, I. Nicoletti, F. Grignani, T. Pawson, and Pelicci PG, A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction, Cell 70:93 (1992).

    Article  PubMed  CAS  Google Scholar 

  62. E.Y. Skolnik, C.H. Lee, A. Batzer, L.M. Vicentini, M. Zhou, R. Daly, M.J. Myers Jr., J.M. Backer, A. Ullrich, M.F. White, et al., The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRs1 and Shc: implications for insulin control of ras signalling, EMBO J. 12:1929 (1993).

    PubMed  CAS  Google Scholar 

  63. W. Li, R. Nishimura, A. Kashishian, A.G. Batzger, W.J.H. Kim, J. Cooper, and J. Schlessinger, A new function for a phosphotyrosine phosphatase: Linking Grb-2 SOS to a receptor tyrosine kinase, Mol. Cell. Biol. 14:509 (1994).

    Article  PubMed  CAS  Google Scholar 

  64. K.S. Ravichandran, K.K. Lee, Z. Songyang, L.C. Cantley, P. Burn, and S.J. Burakoff, Interaction of Shc with the z chain of the T cell receptor upon T cell activation, Science 262:902 (1993).

    Article  PubMed  CAS  Google Scholar 

  65. L. Buday, S.E. Egan, P. Rodriguez-Viciana, D.A. Cantrell, and J. Downward, A complex of Grb-2 adaptor protein, SOS exchange factor and a 36kDa membrane bound tyrosine phosphoprotein is implicated in Ras activation in T cells, J. Biol. Chem. 269:9019 (1994).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cantrell, D., Pastor, M.I., Woodrow, M. (1994). The Regulation and Function of p21Ras in Signal Transduction by the T Cell Antigen Receptor. In: Gupta, S., Paul, W.E., DeFranco, A., Perlmutter, R.M. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation V. Advances in Experimental Medicine and Biology, vol 365. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0987-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0987-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0989-3

  • Online ISBN: 978-1-4899-0987-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics