Advertisement

The Regulation and Function of p21Ras in Signal Transduction by the T Cell Antigen Receptor

  • Doreen Cantrell
  • M. Izquierdo Pastor
  • M. Woodrow
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 365)

Abstract

T lymphocyte activation is initiated by triggering of the T cell antigen receptor (TCR). The TCR is a multichain complex comprising a disulfide-linked heterodimer of the idiotypic αβ chains noncovalently associated with a signal transduction complex composed of the invariant CD3 γ, δ, ϵ chains and the ζ (16 kDa) and η (22 kDa) subunits.1–3 The cytoplasmic domains of the CD3 and ζ subunits are crucial for TCR coupling to intracellular PTKs which is absolutely required for all subsequent T cell responses.4–8 PTKs are known to couple the TCR to an inositol lipid specific phospholipase C, PLCγ19 thus enabling the TCR to regulate the hydrolysis of membrane phosphoinositides (PtdIns), in particular phosphatidylinositol (4,5)-biphosphate (PtdIns(4,5P2), liberating inositol (1,4,5)-triphosphate(Ins(1,4,5)P3) and 1,2-diacylglycerol (DAG). Ins(1,4,5)P3 releases Ca2+ from the endoplasmic reticulum which results in an initial rapid rise in the concentration of intracellular Ca2+; DAG is known to activate the serine/threonin kinase, protein kinase C (PKC).10–12

Keywords

Tyrosine Phosphorylation Guanine Nucleotide Cell Antigen Receptor Imperial Cancer Research Fund Initial Rapid Rise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Reth, Antigen receptor tail clue, Nature 338:383 (1989).PubMedCrossRefGoogle Scholar
  2. 2.
    A.M. Weissman, J.S. Bonifacino, R.D. Klausner, L.E. Samelson, and J.J. O’Shea, T cell antigen receptor: structure, assembly and function. Year Immunol. 4:74 (1989).PubMedGoogle Scholar
  3. 3.
    A. Weiss, T cell antigen receptor signal transduction: a tale of tails and cytoplasmic protein-tyrosine kinases, Cell 73:209 (1993).PubMedCrossRefGoogle Scholar
  4. 4.
    C.H. June, M.C. Fletcher, J.A. Ledbetter, G.L. Schieven, J.N. Siegel, A.F. Phillips, and L.E. Samelson, Inhibition of tyrosine phosphorylation prevents T cell receptor-mediated signal transduction, Proc. Natl. Acad. Sci. U.S.A. 87:7722 (1990).PubMedCrossRefGoogle Scholar
  5. 5.
    R.D. Klauser and L.E. Samelson, T cell antigen receptor activation pathways: the tyrosine kinase connection, Cell 64:875 (1991).CrossRefGoogle Scholar
  6. 6.
    C.E. Rudd, CD4, CD8 and the TCR-CD3 complex: a novel class of protein-tyrosine kinase receptors, Immunol. Today 11:400 (1990).PubMedCrossRefGoogle Scholar
  7. 7.
    L.E. Samelson, A.F. Phillips, E.T. Luong, and R.D. Klausner, Association of the fyn protein-tyrosine kinase with the T-cell antigen receptor, Proc. Natl. Acad. Sci. U.S.A. 87:4358 (1990).PubMedCrossRefGoogle Scholar
  8. 8.
    A.C. Chan, M. Iwashima, C.W. Turck, and A. Weiss, Zap 70: A 70kd protein tyrosine that associates with the TCR zeta chain, Cell 71:649 (1992).PubMedCrossRefGoogle Scholar
  9. 9.
    A. Weiss, G. Koretzky, R.C. Schatzmann, and T. Kadlecec, Functional activation of the T cell antigen receptor induces tyrosine phosphorylation of phospholipase C gamma 1, Proc. Natl. Acad. Sci. U.S.A. 88:5484 (1991).PubMedCrossRefGoogle Scholar
  10. 10.
    M.J. Berridge and R.F. Irvine, Inositol phosphates and cell signalling, Nature 341: 197 (1989).PubMedCrossRefGoogle Scholar
  11. 11.
    Y. Nishizuka, The molecular heterogeneity of protein kinase C and its implication for cellular regulation, Nature 334:661 (1988).PubMedCrossRefGoogle Scholar
  12. 12.
    N. Berry and Y. Nishizuka, Protein kinase C and T cell activation, Eur. J. Biochem. 89:205 (1989).Google Scholar
  13. 13.
    J. Downward, J.D. Graves, P.H. Warne, S. Rayter, and D.A. Cantrell, Stimulation of p21ras upon T-cell activation, Nature 346:719 (1990).PubMedCrossRefGoogle Scholar
  14. 14.
    J. Downward, J.D. Graves, and D.A. Cantrell, The regulation and function of p21ras in T lymphocytes, Immunol. Today 13:92 (1992).CrossRefGoogle Scholar
  15. 15.
    T. Satoh, M. Nafakuku, and Y. Kaziro, Function of Ras as a molecular switch in signal transduction, J. Biol Chem. 267:24149 (1992).PubMedGoogle Scholar
  16. 16.
    M. Izquierdo, J. Downward, J.D. Graves, and D.A. Cantrell, Role of protein kinase C in T-cell antigen receptor regulation of p21ras: evidence that two p21ras regulatory pathways coexist in T cells, Mol. Cell. Biol. 12:3305 (1992).PubMedGoogle Scholar
  17. 17.
    D.A. Cantrell, M.K. Collins, and M.J. Crumpton, Autocrine regulation of T-lymphocyte proliferation: differential induction of IL-2 and IL-2 receptor, Immunology 65:343 (1988).PubMedGoogle Scholar
  18. 18.
    A. Weiss and J.B. Imboden, Cell surface molecules and early events involved in human T lymphocyte activation, Adv. Immunol. 41:1 (1987).PubMedCrossRefGoogle Scholar
  19. 19.
    C.T. Baldari, G. Macchia, and J.L. Telford, Interleukin-2 promoter activation in T cells expressing activated Ha-ras, J. Biol. Chem. 267:4289 (1992).PubMedGoogle Scholar
  20. 20.
    S. Rayter, M. Woodrow, S.C. Lucas, D. Cantrell, and J. Downward, p21ras mediates control of IL2 gene promoter function in T cell activation, EMBO J. 11:4549 (1992).PubMedGoogle Scholar
  21. 21.
    M. Woodrow, S. Rayter, J. Downward, and D.A. Cantrell, p21ras function is important for T cell antigen receptor and protein kinase C regulation of nuclear factor of activated cells, J. Immunol. 150:1 (1993).Google Scholar
  22. 22.
    W.M. Flanagan, B. Corthésy, R.J. Bram, and G.R. Crabtree, Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A, Nature 352:803 (1991).PubMedCrossRefGoogle Scholar
  23. 23.
    J. Jain, P.G. McCaffrey, V.E. Valge-Archer, and A. Rao, Nuclear factor of activated T cells contains Fos and Jun, Nature 356:801 (1992).PubMedCrossRefGoogle Scholar
  24. 24.
    J.P. Northrop, K.S. Ullman, and G.R. Crabtree, Characterisation of the nuclear and cytoplasmic components of the lymphoid-specific nuclear factor of activated T cells (NFAT) complex, J. Biol Chem. 268:22917 (1993).Google Scholar
  25. 25.
    L.H. Boise, B. Petryniak, X. Mao, C.H. June, C.Y. Wang, T. Lindsten, R. Bravo, K. Kovary, J.M. Leiden, and C.B. Thompson, The NFAT-1 DNA binding complex in activated T cells contains Fra-1 and Jun-B, Mol. Cell. Biol. 113:1911 (1993).Google Scholar
  26. 26.
    S.L. Schreiber and G.R. Crabtree, The mechanism of action of cyclosporin A and FK506, Immunol Today 13:136 (1992).PubMedCrossRefGoogle Scholar
  27. 27.
    N.A. Clipstone and G.R. Crabtree, Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation, Nature 357:695 (1992).PubMedCrossRefGoogle Scholar
  28. 28.
    S.J. O’Keefe, J. Tamura, R.L. Kincaid, M.J. Tocci, and E.A. O’Neill, FK-506 and Cs-A-sensitive activation of the interleukin-2 promoter by calcineurin, Nature 357:692 (1992).PubMedCrossRefGoogle Scholar
  29. 29.
    M. Woodrow, N. Clipstone, and D. A. Cantrell, p21ras and calcineurin synergise to regulate NFAT, J. Exp. Med. 178: 1517 (1993).PubMedCrossRefGoogle Scholar
  30. 30.
    B. Binetruy, T. Smeal, and M. Karin, Ha-ras augments c-jun activation and stimulates phosphorylation of its activation domains, Nature 251:122 (1991).CrossRefGoogle Scholar
  31. 31.
    T. Smeal, B. Binetruy, D.A. Mercola, M. Birrer, and M. Karin, Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73, Nature 354:494 (1991).PubMedCrossRefGoogle Scholar
  32. 32.
    T. Hunter and M. Karin, The regulation of transcription by phosphorylation, Cell 70: 375 (1992).PubMedCrossRefGoogle Scholar
  33. 33.
    S.J. Leevers and C.J. Marshall, MAP kinase regulation—the oncogene connection, Trends. Cell. Biol. 2:283 (1992).PubMedCrossRefGoogle Scholar
  34. 34.
    D.J. Robbins, M. Cheng, E. Zhen, C.A. Vanderbilt, L.A. Feig, and M.H. Cobb, Evidence for a Ras-dependent extracellular signal-regulated protein kinase (ERK) cascade, Proc. Natl Acad. Sci. U.S.A. 89:6924 (1992).PubMedCrossRefGoogle Scholar
  35. 35.
    S.M. Thomas, M. DeMarco, G. D’Arcangelo, S. Halegoua, and J.S. Brugge, Ras is essential for nerve growth factor and phorbol ester-induced tyrosine phosphorylation of MAP kinases, Cell 68:1031 (1992).PubMedCrossRefGoogle Scholar
  36. 36.
    S.L. Pelech and J.S. Sanghera, MAP kinases: charting the regulatory pathways, Science 257:1355 (1992).PubMedCrossRefGoogle Scholar
  37. 37.
    A.E. Nel, C. Hanekon, and L. Hultin, Protein kinase C plays a role in the induction of tyrosine phosphorylation of lymphoid microtubule-associated protein-2 kinase. Evidence for a CD3-associated cascade that includes p561ck and that is defective in HPB-ALL, J. Immunol. 147:1933 (1991).PubMedGoogle Scholar
  38. 38.
    C.E. Whitehurst, T.G. Boulton, M.H. Cobb, and T.G. Geppert, Extracellular signal-related kinases in T cells. Anti-CD3 and 4-beta-phorbol 12-myristate 13-acetate induced phosphorylation and activation, J. Immunol. 148:3230 (1992).PubMedGoogle Scholar
  39. 39.
    M. Izquierdo, S.J. Leevers, C.J. Marshall, and D.A. Cantrell, p21ras couples the T cell antigen receptor to extracellular signal-related kinase 2 in T lymphocytes, J. Exp. Med. 178:1199 (1993).PubMedCrossRefGoogle Scholar
  40. 40.
    B.J. Pulverer, J.M. Kyriakis, J. Avruch, E. Nikolakaki, and J.R. Woodgett, Phosphorylation of c-jun mediated by MAP kinases, Nature 353:670 (1991).PubMedCrossRefGoogle Scholar
  41. 41.
    R. Marais, J. Wynne, and R. Treisman, The SRF accessory protein ELK-1 contains a growth factor-regulated transcriptional activation domain, Cell 73:381 (1993).PubMedCrossRefGoogle Scholar
  42. 42.
    A. Seth, F.A. Gonzalez, S. Gupta, D.L. Raden, and R.J. Davis, Signal transduction within the nucleus by mitogen-activated protein kinase, J. Biol. Chem. 34:24796 (1992).Google Scholar
  43. 43.
    J. Downward, Regulation of p21ras by GAPs and guanine nucleotide exchange proteins in normal and oncogenic cells, Curr. Opin. Genet. Dev. 2:13 (1992).PubMedCrossRefGoogle Scholar
  44. 44.
    F. McCormick, ras GTPase activating protein: signal transmitter and signal terminator, Cell 56:5 (1989).PubMedCrossRefGoogle Scholar
  45. 45.
    R. Ballester, D. Marchuk, M. Boguski, A. Saulino, R. Letcher, M. Wigler, and F. Collins, The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins, Cell 63: 851 (1990).PubMedCrossRefGoogle Scholar
  46. 46.
    C. Shou, C.L. Farnsworth, B.G. Neel, and L.A. Feig, Molecular cloning of cDNAs encoding a guanine-nucleotide-releasing factor for Ras p21, Nature 358:351 (1992).PubMedCrossRefGoogle Scholar
  47. 47.
    D. Bowtell, P. Fu, M. Simon, and P. Senior, Identification of murine homologues of the Drosophilia Son of Sevenless gene: potential activators of ras, Proc. Natl. Acad. Sci. U.S.A. 89:6511 (1992).PubMedCrossRefGoogle Scholar
  48. 48.
    E. Gulbins, K.M. Coggeshall, G. Baier, S. Katzav, P. Burn, and A. Altman, Tyrosine kinase stimulated guanine nucleotide exchange of Vav in T cell activation, Science 260:822 (1993).PubMedCrossRefGoogle Scholar
  49. 49.
    J.M. Adams, H. Houston, J. Allen, T. Lints, and R. Harvey, The hematopoietically expressed vav proto-oncogene shares homology with the dbl GDP-GTP exchange factor, the bcr gene and a yeast gene (CDC24) involved in cytoskeletal organization, Oncogene 7:611 (1992).PubMedGoogle Scholar
  50. 50.
    J.D. Graves, J. Downward, S. Rayter, P. Warne, A.L. Tutt, M. Glennie, and D.A. Cantrell, CD2 antigen mediated activation of the guanine nucleotide binding proteins p21ras in human T lymphocytes, J. Immunol. 146:3709 (1991).PubMedGoogle Scholar
  51. 51.
    M. Izquierdo, J. Downward, W.J. Leonard, H. Otani, and D.A. Cantrell, IL-2 activation of p21ras in murine myeloid cells transfected with human IL-2 receptor beta chain, Eur. J. Immunol. 22:817 (1992).PubMedCrossRefGoogle Scholar
  52. 52.
    R.H. Medema, A.M.M. Vries-Smits, G.C.M. van der Zon, J.A. Maassen, and J.L. Bos, Ras activation by insulin and epidermal growth factor through enhanced exchange of guanine nucleotides on p21ras, Mol. Cell. Biol. 13:155 (1993).PubMedGoogle Scholar
  53. 53.
    L. Buday and J. Downward, Epidermal growth factor regulates the exchange rate of guanine nucleotides on p21ras in fibroblasts, Mol. Cell. Biol. 13:1903 (1993).PubMedGoogle Scholar
  54. 54.
    L. Buday and J. Downward, Epidermal grwoth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein and Sos nucleotide exchange factor, Cell 73:611 (1993).PubMedCrossRefGoogle Scholar
  55. 55.
    S.E. Egan, B.W. Giddings, M.W. Brooks, L. Buday, A.M. Sizeland, and R.E. Weinberg, Association of SOS Ras exchange protein with GRB2 is implicated in tyrosine kinase signal transduction and transformation, Nature 363:45 (1993).PubMedCrossRefGoogle Scholar
  56. 56.
    F. McCormick, How receptors turn Ras on, Nature 363:15 (1993).PubMedCrossRefGoogle Scholar
  57. 57.
    K. Matuoka, M. Shibata, A. Yamakawa, and T. Takenawa, Cloning of ASH, a ubiquitous protein composed of one src homology region (SH)2 and two SH3 domains from human and rat cDNA libraries, Proc. Natl. Acad. Sci. U.S.A. 89:9015 (1992).PubMedCrossRefGoogle Scholar
  58. 58.
    E.J. Lowenstein, R.J. Daly, A.G. Batzer, W. Li, B. Margolis, R. Lammers, A. Ullrich, and J. Schlessinger, The SH2 and SH3 containing protein Grb-2 links receptor tyrosine kinases to ras signaling, Cell 70:431 (1992).PubMedCrossRefGoogle Scholar
  59. 59.
    M. Rozakis-Adcock, R. Fernley, S. Wade, T. Pawson, and D. Bowtell, The SH2 and SH3 domains of mammalian Grb-2 couple the EGF receptor to the Ras activator mSOS, Nature 363: 83 (1993).PubMedCrossRefGoogle Scholar
  60. 60.
    M. Rozakis-Adcock, J. McGlade, G. Mbamalu, G. Pelicci, R. Daley, W. Li, A. Batzer, S. Thomas, J. Brugge, P.G. Pelicci, et al., Association of the Shc and Grb2/Sem5-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases, Nature 360:689 (1992).PubMedCrossRefGoogle Scholar
  61. 61.
    G. Pelicci, L. Lanfrancone, F. Grignani, J. McGlade, F. Cavallo, G. Forni, I. Nicoletti, F. Grignani, T. Pawson, and Pelicci PG, A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction, Cell 70:93 (1992).PubMedCrossRefGoogle Scholar
  62. 62.
    E.Y. Skolnik, C.H. Lee, A. Batzer, L.M. Vicentini, M. Zhou, R. Daly, M.J. Myers Jr., J.M. Backer, A. Ullrich, M.F. White, et al., The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRs1 and Shc: implications for insulin control of ras signalling, EMBO J. 12:1929 (1993).PubMedGoogle Scholar
  63. 63.
    W. Li, R. Nishimura, A. Kashishian, A.G. Batzger, W.J.H. Kim, J. Cooper, and J. Schlessinger, A new function for a phosphotyrosine phosphatase: Linking Grb-2 SOS to a receptor tyrosine kinase, Mol. Cell. Biol. 14:509 (1994).PubMedCrossRefGoogle Scholar
  64. 64.
    K.S. Ravichandran, K.K. Lee, Z. Songyang, L.C. Cantley, P. Burn, and S.J. Burakoff, Interaction of Shc with the z chain of the T cell receptor upon T cell activation, Science 262:902 (1993).PubMedCrossRefGoogle Scholar
  65. 65.
    L. Buday, S.E. Egan, P. Rodriguez-Viciana, D.A. Cantrell, and J. Downward, A complex of Grb-2 adaptor protein, SOS exchange factor and a 36kDa membrane bound tyrosine phosphoprotein is implicated in Ras activation in T cells, J. Biol. Chem. 269:9019 (1994).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Doreen Cantrell
    • 1
  • M. Izquierdo Pastor
    • 1
  • M. Woodrow
    • 1
  1. 1.Lymphocyte Activation LaboratoryImperial Cancer Research FundLondonUK

Personalised recommendations