Accessory Molecules that Influence Signaling Through B Lymphocyte Antigen Receptors

  • Edward A. Clark
  • Ingolf Berberich
  • Stephen J. Klaus
  • Che-Leung Law
  • Svetlana P. Sidorenko
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 365)


The B lymphocyte antigen receptor complex, commonly called the B cell receptor (BCR) complex, consists of surface immunoglobulin (sIg) and heterodimers of the Igα (CD79a, mb1) and Igβ (CD79b, B29) phosphoglycoproteins. Recent reviews detail pertinent findings on the BCR complex.1 The structure of the BCR complex and some cell-surface molecules that influence signaling via the BCR are shown in Figure 1. The clonotypic Ig receptor has only a very short cytoplasmic tail and therefore must rely on the invariant members of the BCR complex to transmit signals to the cytosol after receptor crosslinking. Igα/Igβ associate with sIgM and sIgD and are both necessary and sufficient for the expression of sIg. This heterodimer is analogous to the TCR CD3ε/δ or CD3ε/γ heterodimers,2 which, like Igα/Igβ, (1) contain subunits with a single extracellular Ig-like domain; (2) are phosphorylated on tyrosine (CD3ε and CD3ζ) after crosslinking of antigen receptors; and (3) contain within their cytoplasmic tail a single antigen receptor homology 1 (ARH1) motif, D/E-X7-D/E-X2-Y-X2-L-X7-Y-X2-L/I (X = any amino acid). Regions within the transmembrane domain of sIgM are required for the release of [Ca2+]i or internalization of bound antigen.3 Mutations within the transmembrane domain of sIgM that inhibit the activation of new protein tyrosine phosphorylation (PTP) and release of [Ca2+]i also uncouple sIgM from Igα/Igβ.4 However, even though such a mutant sIgM does not associate with Igα/Igβ, when crosslinked it still induces some new PTP.4 Both Sanchez et al.4 and Kim et al.5 reported that surface chimeric fusion proteins expressing the cytoplasmic tails of Igα vs. Igβ differ in their ability to transmit signals: the Igα but not the Igβ tail can induce new PTP, results consistent with studies suggesting that Igα and not Igβ strongly associates with the protein tyrosine kinase (PTK) p53/56Lyn (Lyn).6 Matsuuchi et al.7 found that sIgM expression could be reconstituted in a pituitary cell line with Igα/Igβ coexpression, but that Igα/Igβ were not sufficient to reconstitute a complete signal through sIgM. Thus, IgM interaction with Igα/Igβ is critical for signaling but other factors may also be required.


Antigen Receptor Cell Antigen Receptor Spleen Tyrosine Kinase sIgM Complex Lymphocyte Antigen Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moller, G. Ed. 1993. The B-cell antigen receptor complex. Immunol. Rev. vol. 132. Munksgaard, Copenhagen. 206pp.Google Scholar
  2. 2.
    Cambier, J. C. 1992. Signal transduction by T-and B-cell antigen receptors: converging structures and concepts. Cur. Opin. Immunol. 4:257.CrossRefGoogle Scholar
  3. 3.
    Shaw, A. C., Mitchell, R. N., Weaver, Y. K., Campos-Torres, J., Abbas, A. K., and Leder, P. 1992. Mutations of immunoglobulin transmembrabne and cytoplasmic domains: effect on intracellular signalling and antigen presentation. Cell 63:381.CrossRefGoogle Scholar
  4. 4.
    Sanchez, M., Misulovin, Z., Burkhardt, A. L., et al. 1993. Signal transduction by immunoglobulin is mediated through Igα and Igβ. J. Exp. Med. 178:1049.PubMedCrossRefGoogle Scholar
  5. 5.
    Kim, K.M., Alber, G., Weiser, P., and Reth, M. 1993. Signaling function of the B-cell antigen receptors. Immunol. Rev. 132:125.PubMedCrossRefGoogle Scholar
  6. 6.
    Clark, M. R., Campbell, K. S., Kazlauskas, A., et al., 1992. The B cell antigen receptor complex: association of Ig-alpha and Ig-beta with distinct cytoplasmic effectors. Science 258:123.PubMedCrossRefGoogle Scholar
  7. 7.
    Matsuuchi, L., Gold, M. R., Travis, A., et al. 1992. The membrane IgM-associated proteins MB-1 and Ig-β are sufficient to promote surface expression of a partially functional B-cell antigen receptor in a non lymphoid cell line. Proc. Nat. Acad. Sci. USA 89:3404.PubMedCrossRefGoogle Scholar
  8. 8.
    Yamamoto, T., Yamanashi, Y., and Toyoshima, K. 1993. Association of src-family kinase Lyn with B-cell antigen receptor. Immunol. Rev. 132:187.PubMedCrossRefGoogle Scholar
  9. 9.
    Songyang, Z., Shoelson, S. E., Chaudhuri, M., et al. 1993. SH2 domains recognize specific phosphopeptide sequences. Cell 72:767.PubMedCrossRefGoogle Scholar
  10. 10.
    Cambier, J. C., Bedzyk, W., Campbell, K., et al. 1993. The B-cell antigen receptor: structure and function of primary, secondary, tertiary and quaternary components. Immunol. Rev. 132:85.PubMedCrossRefGoogle Scholar
  11. 11.
    Taniguchi, T., Kobayashi, T., Kondo, J., et al. 1991. Molecular cloning of a porcine gene Syk that encodes a 72-kDa protein-tyrosine kinase showing high susceptibility to proteolysis. J. Biol. Chem. 266:15790.PubMedGoogle Scholar
  12. 12.
    Yamada, T., Taniguchi, T., Yang, C, Yasue, S., Saito, H., and Yamamura, H. 1993. Association with B-cell-antigen receptor with protein-tyrosine kinase p72syk and activation by engagement of membrane IgM. Eur. J. Biochem. 213:455.PubMedCrossRefGoogle Scholar
  13. 13.
    Burg, D. L., Harrison, M. L., and Geahlen, R. L. 1993. Cell cycle-specific activation of the PTK72 protein-tyrosine kinase in B lymphocytes. J. Biol. Chem. 268:2304.PubMedGoogle Scholar
  14. 14.
    Hutchcroft, J. E., Harrison, M. L., and Geahlen, R. L. 1991. B lymphocyte activation is accompanied by phosphorylation of a 72-kDa protein-tyrosine kinase. J. Biol. Chem. 266:14846.PubMedGoogle Scholar
  15. 15.
    Hutchcroft, J. E., Harrison, M. L., and Geahlen, R. L. 1992a. Association of the 72-kDa proteintyrosine kinase PTK72 with the B cell antigen receptor. J. Biol. Chem. 267:8613.PubMedGoogle Scholar
  16. 16.
    Leprince, C., Draves, K. E., Geahlen, R. L., Ledbetter, J. A., and Clark, E. A. 1993. CD22 associates with the human surface IgM-B cell antigen receptor complex. Proc. Nat. Acad. Sci. USA 90:3236.PubMedCrossRefGoogle Scholar
  17. 17.
    Law, C-L., Sidorenko, S. P., Chandran, K. A., Draves, K. E., Chan, A. C., Weiss, A., Edelhoff, S., Disteche, C. M., and Clark, E. A. 1994a. Molecular cloning of human Syk, a cell protein tyrosine kinase associated with the slgM/B cell receptor complex. J. Biol. Chem., in press.Google Scholar
  18. 18.
    Kolanus, W., Romeo, C., and B. Seed. 1993. T cell activation by clustered tyrosine kinases. Cell 74:171.PubMedCrossRefGoogle Scholar
  19. 19.
    Mayer, B. and Baltimore, D. 1993. Signaling through SH3 and SH2 domains. Trends Cell Biol. 3:8.PubMedCrossRefGoogle Scholar
  20. 20.
    Chan, A. C., Iwashima, M., Turck, C. W., and Weiss, A. 1992. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR ζ chain. Cell 71:649.PubMedCrossRefGoogle Scholar
  21. 21.
    Wange, R. L., Malek, S. N., Desiderio, S., and Samelson, L. E. 1993. Tandem SH2 domains of ZAP-70 bind to T cell antigen receptor ζ and CD3ε from activated Jurkat T cells. J. Biol. Chem. 268:19797.PubMedGoogle Scholar
  22. 22.
    Weiss, A. 1993. T cell antigen receptor signal transduction: A tale of tails and cytoplasmic protein-tyrosine kinases. Cell 73:209.PubMedCrossRefGoogle Scholar
  23. 23.
    Cooper, J. A. and Howell, B. 1993. The when and how of Src regulation. Cell 73:1051.PubMedCrossRefGoogle Scholar
  24. 24.
    Law, C-L., Chandran, K., Sidorenko, S. P., Draves, K. E., and Clark, E. A. 1994b. Both SH2 domains of the spleen tyrosine kinase, Syk, are required for efficient binding to components of the B cell antigen receptor complex. Submitted.Google Scholar
  25. 25.
    Hutchcroft, J. E., Geahlen, R. L., Deanin, G. G., and Oliver, J. M. 1992b. Fc epsilon RI-mediated tyrosine phosphorylation and activation of the 72-kDa protein-tyrosine kinase, PTK72, in RBL-2H3 rat tumor mast cells. Proc. Nat. Acad. Sci. USA 89:9107.PubMedCrossRefGoogle Scholar
  26. 26.
    Sidorenko, S. P., Law, C-L., Chandran, K. A., and Clark, E. A. 1994. The human spleen tyrosine kinase, Syk, associates with p53/56Lyn and a 120 kDa phosphoprotein, pp 120. Submitted.Google Scholar
  27. 27.
    Amigorena, S., Bonnerot, C., Drake, J. R., et al. 1992. Cytoplasmic domain heterogeneity and functions of IgG Fc receptors in B lymphocytes. Science 256:1808.PubMedCrossRefGoogle Scholar
  28. 28.
    Pesando, J. M., Bouchard, L. S., and McMaster, B. E. 1989. CD19 is functionally and physically associated with surface immunoglobulin. J. Exp. Med. 170:2159.PubMedCrossRefGoogle Scholar
  29. 29.
    Justement, L. B., Campbell, K. S., Chien, N. C., and Cambier, J. C. 1991. Regulation of B cell antigen receptor signal transduction and phosphorylation by CD45. Science 252:1839.PubMedCrossRefGoogle Scholar
  30. 30.
    Barrett, T. B., Shu, G. L., Draves, K. E., Pezzutto, A., and Clark, E. A. 1990. Signaling through CD 19, Fc receptors or transforming growth factor-β: each inhibits the activation of resting human B cells differently. Eur. J. Immunol. 20:1053.PubMedCrossRefGoogle Scholar
  31. 31.
    Carter, R. H. and Fearon, D. T. 1992. CD19: Lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256:105.PubMedCrossRefGoogle Scholar
  32. 32.
    Tuveson, D. A., Carter, R. H., Soltoff, S. P., and Fearon, D. T. 1993. CD19 of B cells as a surrogate kinase insert region to bind phosphatidylinositol 3 kinase. Science 260:986.PubMedCrossRefGoogle Scholar
  33. 33.
    Chalupny, N. J., Kanner, S. B., Schieven, G. L., et al. 1993. Tyrosine phosphorylation of CD19 in pre-B-cells and mature B-cells. EMBO J. 12:2691.PubMedGoogle Scholar
  34. 34.
    Kishihara, K., Penninger, J., Wallace, V. A., et al. 1993. Normal B lymphocyte development but impaired T cell maturation in CD45-exon6 protein tyrosine phosphatase-deficient mice. Cell 74:143.PubMedCrossRefGoogle Scholar
  35. 35.
    Clark, E. A. 1993. CD22, a B-cell-specific receptor, mediates adhesion and signal transduction. J. Immunol. 150:4715.PubMedGoogle Scholar
  36. 36.
    Stamenkovic, I., Sgroi, D., Aruffo, A., Sy, M. S., and Anderson, T. 1991. The B lymphocyte adhesion molecule CD22 interacts with leukocyte common antigen CD45RO on T cells and alpha 2-6 sialyltransferase, CD75, on B cells. Cell 66:1133.PubMedCrossRefGoogle Scholar
  37. 37.
    Wilson, G. L., Fox, C. H., Fauci, A. S., and Kehrl, J. H. 1991. cDNA cloning of the B cell membrane protein CD22: a mediator of B-B cell interactions. J. Exp. Med. 173:137.PubMedCrossRefGoogle Scholar
  38. 38.
    Torres, R. M., Law, C-L., Santos-Argumedo, L., et al. 1992. Identification and characterization of the murine homologue of CD22, a lymphocyte restricted adhesion molecule. J. Immunol. 149:2641.PubMedGoogle Scholar
  39. 39.
    Aruffo, A., Kanner, S. B., Sgroi, D., Ledbetter, J. A., and Stamenkovic, I. 1992. CD22-mediated stimulation of T cells regulates T-cell receptor/CD3-induced signaling. Proc. Nat. Acad. Sci. USA 89:10242.PubMedCrossRefGoogle Scholar
  40. 40.
    Sgroi, D., Varki, A., Braesch-Anderson, S., and Stamenkovic, I. 1993. CD22, a B cell-specific immunoglobulin superfamily member is a sialic acid-binding lectin, J. Biol. Chem. 268:7011.PubMedGoogle Scholar
  41. 41.
    Powell, L. D., Sgroi, D., Sjoberg, E. R., Stamenkovic, I., and Varki, A. 1993. Natural ligands of the B cell adhesion molecule CD22B carry N-linked oligosaccharides with a2,6 linked sialic acids that are required for recognition. J. Biol. Chem. 268:7019.PubMedGoogle Scholar
  42. 42.
    van Noesel, C. J., Brouns, G. S., van Schijndel, G. M., Bende, R. J., Mason, D. Y., Borst, J., and van Lier, R. A. 1992. Comparison of human B cell antigen receptor complexes: membrane-expressed forms of immunoglobulin (Ig)M, IgD, and IgG are associated with structurally related heterodimers. J. Exp. Med. 175:1511.PubMedCrossRefGoogle Scholar
  43. 43.
    Peaker, C. J. G. and Neuberger, M. S. 1993. Association of CD22 with the B cell antigen receptor. Eur. J. Immunol. 23:1358.PubMedCrossRefGoogle Scholar
  44. 44.
    Pezzutto, A., Rabinovitch, P. S., Dörken, B., Moldenhauer, G., and Clark, E. A 1988. Role of CD22 human B cell surface antigen in the regulation of intracellular free calcium responses induced by anti-immunoglobulin. J. Immunol. 140:1791.PubMedGoogle Scholar
  45. 45.
    Schulte, R. J., Campbell, M.-A., Fischer, W. H., and Sefton, B. M. 1992. Tyrosine phosphorylation of CD22 during B cell activation. Science 258:1001.PubMedCrossRefGoogle Scholar
  46. 46.
    Clark, E. A. 1990. CD40: A cytokine receptor in search of a ligand. Tissue Antigens 35:33.CrossRefGoogle Scholar
  47. 47.
    Clark, E. A. and Ledbetter, J. A. 1986. Activation of human B cells mediated through two distinct cell surface differentiation antigens, Bp35 and Bp50. Proc. Nat. Acad. Sci. USA 83:4494.PubMedCrossRefGoogle Scholar
  48. 48.
    Banchereau, J., de Paoli, P., Valle, A., Garcia, E., and Rousset, F. 1991 Long-term human B cell lines dependent on interleukin 4 and anti-CD40. Science 251:70.PubMedCrossRefGoogle Scholar
  49. 49.
    Spriggs, M. K., Armitage, R. J., Strockbine, L., et al. 1992. Recombinant human CD40 ligand stimulates B cell proliferation and immunoglobulin E secretion. J. Exp. Med. 176:1543.PubMedCrossRefGoogle Scholar
  50. 50.
    Liu, Y-J., Joshua, D. E., Williams, G. T., Smith, C. A., Gordon, J., and MacLennan, I. C. M. 1989. Mechanisms of antigen-driven selection in germinal centres. Nature 342:929.PubMedCrossRefGoogle Scholar
  51. 51.
    Valentine, M. A. and Licciardi, K. A. 1992. Rescue from anti-IgM-induced cell death by the B cell surface proteins CD20 and CD40. Eur. J. Immunol. 22:3141–3146.PubMedCrossRefGoogle Scholar
  52. 52.
    Tsubata, T., Wu, J., and Honjo, T. 1993. B-cell apoptosis induced by antigen receptor crosslinking is blocked by a T-cell signal through CD40. Nature 364:645.PubMedCrossRefGoogle Scholar
  53. 53.
    Hill, A. and Chapel, H. 1993. The fruits of cooperation. Nature 361:494.PubMedCrossRefGoogle Scholar
  54. 54.
    Kawabe, T., Yoshida, K., Yoshida, N., Kishimoto, T., and Kikutani, H. 1993. Generation and analysis of CD40 deficient mice. Tis. Antigens 42:309.Google Scholar
  55. 55.
    Lalmanach-Girard, A. C., Chiles, T. C., Parker, D. C., and Rothstein, T. L. 1993. T cell-dependent induction of NF-kB in B cells. J. Exp. Med. 177:1215.PubMedCrossRefGoogle Scholar
  56. 56.
    Berberich, I., Shu, G., and Clark, E. A. Crosslinking CD40 on B cells rapidly activates the transcription factor NF-kB. Submitted.Google Scholar
  57. 57.
    Clark, E. A. and Shu, G. L. 1990. Linkage between IL-6 and CD40 signaling: IL-6 activates the phosphorylation of CD40. J. Immunol. 145:1400.PubMedGoogle Scholar
  58. 58.
    Hirano, T., Akira, S., Taga, T., and Kishimoto, T. 1990. Biological and clinical aspects of interleukin 6. Immunol. Today 11:4PubMedCrossRefGoogle Scholar
  59. 59.
    Uckun, F. M., Schieven, G. L., Dibirdik, L, et al., 1991. Stimulation of protein tyrosine phosphorylation, phosphoinositide turnover, and multiple previously unidentified serine/threonine-specific protein kinases by the pan-B-cell receptor CD40/Bp50 at discrete developmental stages of human B-cell ontogeny. J. Biol. Chem. 266:17478.PubMedGoogle Scholar
  60. 60.
    Ren, C. L., Morio, T., Fu, S. M., and Geha, R. S. 1994. Signal transduction via CD40 involves activation of lyn kinase and phosohatidylinositol-3-kinase, and phosphorylation of phospholipase Cγ2 J. Exp. Med. 179:673.PubMedCrossRefGoogle Scholar
  61. 61.
    Kansas, G. S. and Tedder, T. F. 1991. Transmemberane signals generated through MHC class II, CD19, CD20, CD39 and CD40 antigens induce LFA-1-dependent and independent adhesion in human B cells through a tyrosine kinase-dependent pathway. J. Immunol. 147:4094.PubMedGoogle Scholar
  62. 62.
    Stade, B. G., Messer, G., Riethmuller, G., and Johnson, J. P. 1990. Structural characteristics of the 5′. region of the human ICAM-1 gene. Immunobiology 182:79.PubMedCrossRefGoogle Scholar
  63. 63.
    Vorarberger, G., Schafer, R., and Stratowa, C. 1991. Cloning of the human gene for intercellular adhesion molecule 1 and analysis of its 5′-regulatory region. J. Immunol. 147:2777.Google Scholar
  64. 64.
    Schwartz, R. H. 1992. Costimulation of T lymphocytes: The role of CD28, CTLA-4, and B7/BB-1 in interleukin-2 production and immunotherapy Cell 71:1055.CrossRefGoogle Scholar
  65. 65.
    Klaus, S. J., Pinchuk, L., Ochs, H. D., Fanslow, W. C., Armitage, R. J., and Clark, E. A. 1994. Costimulation through CD28 enhances T cell-dependent B cell activation via a CD40-CD40L interaction. J. Immunol. 152: in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Edward A. Clark
    • 1
  • Ingolf Berberich
    • 1
  • Stephen J. Klaus
    • 1
  • Che-Leung Law
    • 1
  • Svetlana P. Sidorenko
    • 1
  1. 1.Department of MicrobiologyUniversity of Washington Medical Center SC-42SeattleUSA

Personalised recommendations