Involvement of the Protein Tyrosine Phosphatase PTP1C in Cellular Physiology, Autoimmunity and Oncogenesis

  • John McCulloch
  • Katherine A. Siminovitch
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 365)


Control of a wide range of cellular functions is governed by the phosphorylation of cellular proteins on tyrosine residues. Activities regulated in such a manner include proliferation, differentiation and many specific cellular functions. The phosphorylation status of intracellular proteins is determined by the activity of two mutually antagonistic classes of enzyme — protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). This article will concentrate on current knowledge concerning the haemopoietic cell phosphatase PTP1C and will describe our recent findings concerning the in vivo and in vitro roles of this protein from PTP1C-mutant mice.


Splice Site Haemopoietic Cell Motheaten Mouse Patchy Alopecia Viable Motheaten 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Q. Yang and N.K. Tonks. Isolation of a clone encoding a human protein-tyrosine phosphatase with homology to the cytoskeletal-associated proteins band 4.1, ezrin, and talin. Proc.Natl.Acad.Sci.USA 88:5949 (1991).PubMedCrossRefGoogle Scholar
  2. 2.
    B. Zanke, H. Suzuki, K. Kishihara, L. Mizzen, M. Minden, T. Pawson and T.W. Mak. Cloning and expression of an inducible lymphoid-specific, protein tyrosine phosphatase (HePTPase). Eur.J.Immunol. 22:235 (1992).PubMedCrossRefGoogle Scholar
  3. 3.
    J.K. Karlund. Transformation of cells by an inhibitor of phosphatase acting on phosphotyrosine in proteins. Cell 41:707 (1985).CrossRefGoogle Scholar
  4. 4.
    S. Brown-Shimer, K. A. Johnson, D.E. Hill and A.M. Bruskin. Effect of protein tyrosine phosphatase 1B expression on transformation by the human neu oncogene. Cancer Res. 52:478 (1992).PubMedGoogle Scholar
  5. 5.
    J.T. Pingel and M.L. Thomas. Evidence that the leucocyte-common antigen is required for antigen-induced T-cell proliferation. Cell 58:1055 (1989).PubMedCrossRefGoogle Scholar
  6. 6.
    M.F. Gruber, J.M. Bjorndahl, S. Nakamura, S.M. Fu. Anti-CD45 inhibition of human B cell proliferation depends on the nature of activation signals and the state of B cell activation. A study with anti-IgM and anti-CDw40 antibodies. J.Immunol. 142:4144 (1989).PubMedGoogle Scholar
  7. 7.
    K. Kishihara, J. Penninger, V.A. Wallace, T.M. Kundig, K. Kawai, A. Wakeman, E. Timms, K. Pfeffer et al. Normal B cell development but impaired T cell maturation in CD45-exon 6 protein tyrosine phosphatase deficient mice. Cell 74:143 (1993).PubMedCrossRefGoogle Scholar
  8. 8.
    M.C. Green and L.D. Shultz. Motheaten, an immunodeficient mutant of the mouse. J.Hered. 66:250 (1975).PubMedGoogle Scholar
  9. 9.
    L.D. Shultz, D.R. Coman, C.L. Bailey, W.G. Beamer and C.L. Sidman. Viable motheaten, a new allele at the motheaten locus. I. Pathology. Am.J.Pathol. 116:179 (1984).PubMedGoogle Scholar
  10. 10.
    C.L. Sidman, L.D. Shultz, R.R. Hardy, K. Hayakawa and L.A. Herzenberg. Production of immunoglobulin isotypes by Ly-1+ B cells in viable motheaten and normal mice. Science 232:1423 (1986).PubMedCrossRefGoogle Scholar
  11. 11.
    L.A. Herzenberg, A.M. Stall, P.A. Lalor, C. Sidman, W.A. Moore, D.R. Parks and L.A. Herzenberg. The Ly-1 B cells lineage. Immunol.Rev. 93:81 (1986).PubMedCrossRefGoogle Scholar
  12. 12.
    A.B. Kantor. The development and repertoire of B-1 cells (CD5 B cells). Immunol.Today 12:389 (1991).PubMedCrossRefGoogle Scholar
  13. 13.
    C.L. Scribner, C.T. Hansen, D.M. Klinman and A.D. Steinberg. The interaction of the xid and me genes. J.Immunol. 138:3611 (1987).PubMedGoogle Scholar
  14. 14.
    I. Goldschneider, K.L. Komschlies and D.L. Greiner. Studies of thymocytopoiesis in rats and mice. I. Kinetics of appearance of thymocytes using a direct intrathymic adoptive transfer assay for thymocyte precursors. J.Exp.Med. 163:1 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    D.L. Greiner, I. Goldschneider, K.L. Komschlies, E.S. Medlock, F.J. Bollum and L.D. Shultz. Defective lymphopoiesis in bone marrow ofmotheaten (me/me) and viable motheaten (me v /mev) mutant mice. I. Analysis of development of prothymocytes, early B lineage cells, and terminal deoxynucleotidyl transferase-positive cells. J.Exp.Med. 164:1129.Google Scholar
  16. 16.
    S.M. Hayes, L.D. Shultz and D.R. Greiner. Thymic involution in viable motheaten (me v) mice is associated with a loss of thymic precursor activity. Dev. Immunol. 2:191 (1992).PubMedCrossRefGoogle Scholar
  17. 17.
    C.L. Sidman, L.D. Shultz and E.R. Unanue. The mouse mutant “motheaten.” II. Functional studies of the immune system. J. Immunol. 121:2399 (1987).Google Scholar
  18. 18.
    W.F. Davidson, H.C. Morse, S.O. Sharrow and T.M. Chused. Phenotypic and functional effects of the motheaten gene on murine B and T lymphocytes. J.Immunol. 122:884 (1979).PubMedGoogle Scholar
  19. 19.
    E.A. Clark, L.D. Shultz and S.B. Pollack. Mutations in mice that influence natural killer (NK) cell activity. Immunogenetics 12:601 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    G.C. Koo, C.L. Manyak, J. Dasch, L. Ellingsworth and L.D. Shultz. Suppressive effects of monocytic cells and transforming growth factor-β on natural killer cell differentiation in autoimmune viable motheaten mice. J.Immunol. 147:1194 (1991).PubMedGoogle Scholar
  21. 21.
    G. van Zant and L.D. Shultz. Hematologic abnormalities of the immunodeficient mouse mutant, viable motheaten (me v). Exp.Hematol. 17:81 (1989).PubMedGoogle Scholar
  22. 22.
    K.L. McCoy, E. Chi, D. Engel and J. Clagett. Accelerated rate of mononuclear phagocyte production in vitro by splenocytes from autoimmune motheaten mice. Am.J.Path. 112:18 (1983).PubMedGoogle Scholar
  23. 23.
    K.L. McCoy, K. Neilson and J. Clagett. Spontaneous production of colony stimulating activity by splenic Mac-1 antigen positive cells from autoimmune motheaten mice. J.Immunol. 132:272 (1984).PubMedGoogle Scholar
  24. 24.
    S-H. Shen, L. Bastien, B.I. Posner and P. Chretien. A protein tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases. Nature 352:736 (1991).PubMedCrossRefGoogle Scholar
  25. 25.
    T. Yi, J.L. Cleveland and J.N. Ihle. Protein tyrosine phosphatase containing SH2 domains: characterisation, preferential expression in hematopoietic cells, and localization to human chromosome 12p12-13. Mol.Cell.Biol. 12:836 (1992).PubMedGoogle Scholar
  26. 26.
    J. Plutzky, B.G. Neel, and R.D. Rosenberg. Isolation of a novel src homology 2 — SH2 containing tyrosine phosphatase. Proc.Natl.Acad.Sci.USA 89:1123 (1992).PubMedCrossRefGoogle Scholar
  27. 27.
    R.J. Matthews, D.B. Browne, E. Flores and M.L. Thomas. Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine-rich sequences. Mol. Cell. Biol. 12 2396 (1992).PubMedGoogle Scholar
  28. 28.
    M. Kozlowski, I. Mlinaric-Rascan, G-S. Feng, R. Shen, T. Pawson and K.A. Siminovitch. Expression and catalytic activity of the tyrosine phosphatase PTP1C is severly impaired in motheaten and viable motheaten mice. J.Exp.Med. 178:2157 (1993).PubMedCrossRefGoogle Scholar
  29. 29.
    L.D. Shultz, P.A. Schweitzer, T.V. Rajan, T. Yi, J.N. Ihle, R.J. Matthews, M.L. Thomas and D.R. Beier. Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell 73:1445 (1993).PubMedCrossRefGoogle Scholar
  30. 30.
    C.A. Koch, D. Anderson, M.F. Moran, C. Ellis and T. Pawson. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252:668 (1991).PubMedCrossRefGoogle Scholar
  31. 31.
    T. Pawson and G.D. Gish. SH2 and SH3 domains: from structure to function. Cell 71:359 (1992).PubMedCrossRefGoogle Scholar
  32. 32.
    W. Vogel, R. Lammers, J. Huang and A. Ullrich. Activation of phosphotyrosine phosphatase by tyrosine phosphorylation. Science 259:1611 (1993).PubMedCrossRefGoogle Scholar
  33. 33.
    T. Yi and J.N. Ihle. Association of hematopoietic cell phosphatase with c-kit after stimulation with c-kit ligand. Mol. Cell. Biol. 13:3350 (1993).PubMedGoogle Scholar
  34. 34.
    H.W. Tsui, K.A. Siminovitch, L. de Souza and F.W.L. Tsui. Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nature Genetics 4:124 (1993).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • John McCulloch
    • 1
  • Katherine A. Siminovitch
    • 1
    • 2
  1. 1.Samuel Lunenfeld Research InstituteUniversity of Toronto, Mount Sinai HospitalTorontoCanada
  2. 2.Departments of Medicine and ImmunologyUniversity of Toronto, Mount Sinai HospitalTorontoCanada

Personalised recommendations