Advertisement

The Role of CD40 Ligand in Human Disease

  • Melanie K. Spriggs
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 365)

Abstract

CD40 is a 50kDA surface glycoprotein expressed predominantly on B cells, monocytes, dendritic cells, thymic epithelium and certain carcinomas.1–3 It is a member of the tumor necrosis factor receptor (TNFR) superfamily,4,5 a group of related type I transmembrane molecules which, in addition to CD40, includes both forms of TNFR, the low affinity nerve growth factor (NGF) receptor, CD27, CD30, OX40, 4-1BB, and Fas.6–9 Members of this family are characterized by the presence of multiple cysteine-rich repeats consisting of approximately 40 amino acids in the extracellular amino terminal domain.5 The average sequence homology between family members in the extracellular domain is around 25%.

Keywords

Nerve Growth Factor Tumor Necrosis Factor Receptor CD40 Ligand Restriction Fragment Length Polymorphism Locus CD40L Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.A. Clark and P.J. Lane, Regulation of human B-cell activation and adhesion, Annu. Rev. Immunol. 9:97 (1991).PubMedCrossRefGoogle Scholar
  2. 2.
    A.H. Galy and H. Spits, CD40 is functionally expressed on human thymic epithelial cells, J. Immunol. 149:775 (1992).PubMedGoogle Scholar
  3. 3.
    M.R. Alderson, R.J. Armitage, T.W. Tough, L. Strockbine, W.C. Fanslow, and M.K. Spriggs, CD40 expression by human monocytes: Regulation by cytokines and activation of monocytes by the ligand for CD40., J. Exp. Med. 178:669 (1993).PubMedCrossRefGoogle Scholar
  4. 4.
    C.A. Smith, T. Davis, D. Anderson, L. Solam, M.P. Beckmann, R. Jerzy, S.K. Dower, D. Cosman, and R.G. Goodwin, A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins., Science 248:1019 (1990).PubMedCrossRefGoogle Scholar
  5. 5.
    S. Mallett and A.N. Barclay, A new superfamily of cell surface proteins related to the nerve growth factor receptor., Immunol. Today 12:220 (1991).PubMedCrossRefGoogle Scholar
  6. 6.
    D. Camerini, G. Walz, W.A.M. Loenen, J. Borst, and B. Seed, The T cell activation antigen CD27 is a member of the NGF/TNF receptor gene family., J. Immunol. 147:3165 (1991).PubMedGoogle Scholar
  7. 7.
    H. Dürkop, U. Latza, M. Hummel, F. Eitelbach, B. Seed, and H. Stein, Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin’s disease., Cell 68:421 (1992).PubMedCrossRefGoogle Scholar
  8. 8.
    N. Itoh, S. Yonehara, A. Ishii, M. Yonehara, S.-I. Mizushima, M. Sameshima, A. Hase, Y. Seto, and S. Nagata, The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis., Cell 66:233 (1991).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Baens, M. Chaffanet, J.J. Cassiman, H. van den Berghe, and P. Marynen, Construction and evaluation of a hncDNA library of human 12p transcribed sequences derived from a somatic cell hybrid, Genomics 16:214 (1993).PubMedCrossRefGoogle Scholar
  10. 10.
    T.B. Barrett, G. Shu, and E.A. Clark, CD40 signaling activates CD 11a/CD 18 (LFA-1)-mediated adhesion in B cells., J. Immunol. 146:1722 (1991).PubMedGoogle Scholar
  11. 11.
    J. Gordon, M.J. Millsum, G.R. Guy, and J.A. Ledbetter, Resting B lymphocytes can be triggered directly through the CDw40 (Bp50) antigen., J. Immunol. 140:1425 (1988).PubMedGoogle Scholar
  12. 12.
    E.A. Clark and J.A. Ledbetter, Activation of human B cells mediated through two distinct cell surface differentiation antigens, Bp35 and Bp50., Proc. Natl Acad. Sci. USA 83:4494 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    J. Banchereau, P. de Paoli, A. Valle, E. Garcia, and F. Rousset, Long term human B cell lines dependent on interleukin-4 and antibody to CD40., Science 251:70 (1991).PubMedCrossRefGoogle Scholar
  14. 14.
    H.H. Jabara, S.M. Fu, R.S. Geha, and D. Vercelli, CD40 and IgE: Synergism between anti-CD40 monoclonal antibody and interleukin-6 in the induction of IgE synthesis by highly purified human B cells., J. Exp.Med. 172:1861 (1990).PubMedCrossRefGoogle Scholar
  15. 15.
    K. Zhang, E.A. Clark, and A. Saxon, CD40 stimulation provides and IFN-γ-independent and IL-4-dependent differentiation directly to human B cells for IgE production., J. Immunol. 146:1836 (1991).PubMedGoogle Scholar
  16. 16.
    H. Gascan, J.-F. Gauchat, G. Aversa, P. van Vlasselaer, and J.E. de Vries, Anti-CD40 monoclonal antibodies or CD4+ T cell clones and IL-4 induce IgG4 and IgE switching in purified human B cells via different signalling pathways., J. Immunol. 147:8 (1991).PubMedGoogle Scholar
  17. 17.
    F. Rousset, E. Garcia, and J. Banchereau, Cytokine-induced proliferation and immunoglobulin production of human B lymphocytes triggered through their CD40 antigen, J. Exp. Med. 173:705 (1991).PubMedCrossRefGoogle Scholar
  18. 18.
    F. Rousset, E. Garcia, T. Defrance, C. Peronne, N. Vezzio, D.H. Hsu, R. Kastelein, K.W. Moore, and J. Banchereau, Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes, Proc. Natl. Acad. Sci. USA 89:1890 (1992).PubMedCrossRefGoogle Scholar
  19. 19.
    T. Defrance, B. Vanbervliet, F. Briere, I. Durand, F. Rousset, and J. Banchereau, Interleukin 10 and transforming growth factor beta cooperate to induce anti-CD40-activated naive human B cells to secrete immunoglobulin A, J. Exp. Med. 175:671 (1992).PubMedCrossRefGoogle Scholar
  20. 20.
    Y.J. Liu, D.E. Joshua, G.T. Williams, C.A. Smith, J. Gordon, and I.C.M. MacLennon, Mechanism of antigen-driven selection in germinal centres., Nature 342:929 (1989).PubMedCrossRefGoogle Scholar
  21. 21.
    N.G. Copeland and N.A. Jenkins, Development and applications of a molecular genetic linkage map of the mouse genome, Trends Genet. 7:113 (1991).PubMedGoogle Scholar
  22. 22.
    R.C. Allen, R.J. Armitage, M.E. Conley, H. Rosenblatt, N.A. Jenkins, N.G. Copeland, M.A. Bedell, S. Edelhoff, C.M. Disteche, D.K. Simoneaux, W.C. Fanslow, J. Belmont, and M.K. Spriggs, CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome., Science 259:990 (1993).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Aruffo, M. Farrington, D. Hollenbaugh, X. Li, A. Milatovich, S. Nonoyama, J. Bajorath, L.S. Grosmaire, R. Stenkamp, M. Neubauer, R.L. Roberts, R.J. Noelle, J.A. Ledbetter, U. Francke, and H.D. Ochs, The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome., Cell 72:291 (1993).PubMedCrossRefGoogle Scholar
  24. 24.
    D. Graf, U. Korthauer, H.W. Mages, G. Senger, and R.A. Kroczek, Cloning of TRAP, a ligand for CD40 on human T cells, Eur. J. Immunol. 22:3191 (1992).PubMedCrossRefGoogle Scholar
  25. 25.
    E.J. Mensink, A. Thompson, L.A. Sandkuyl, M.E. Kraakman, J.D. Schot, T. Espanol, and R.K. Schuurman, X-linked immunodeficiency with hyperimmunoglobulinemia M appears to be linked to the DXS42 restriction fragment length polymorphism locus, Hum. Genet. 76:96 (1987).PubMedCrossRefGoogle Scholar
  26. 26.
    M. Padayachee, C. Feighery, A. Finn, C. McKeown, R.J. Levinsky, C. Kinnon, and S. Malcolm, Mapping of the X-linked form of hyper-IgM syndrome (HIGM1) to Xq26 by close linkage to HPRT, Genomics 14:551 (1992).PubMedCrossRefGoogle Scholar
  27. 27.
    F.S. Rosen, S.V. Kevy, E. Merler, C.A. Janeway Jr., and D. Gitlin, Recurrent bacterial infections and dysgammaglobulinemia: Deficiency of 7S gamma-globulins in the presence of elevated 19S gamma-globulins., Pediatrics 28:182 (1961).PubMedGoogle Scholar
  28. 28.
    L.D. Notarangelo, M. Duse, and A.G. Ugazio, Immunodeficiency with hyper-IgM (HIM), Immunodefic. Rev. 3:101 (1992).PubMedGoogle Scholar
  29. 29.
    M.E. Conley, Molecular approaches to analysis of X-linked immunodeficiencies., Annu. Rev. Immunol. 10:215 (1992).PubMedCrossRefGoogle Scholar
  30. 30.
    L. Mayer, S.P. Kwan, C. Thompson, H.S. Ko, N. Chiorazzi, T. Waldmann, and F. Rosen, Evidence for a defect in “switch” T cells in patients with immunodeficiency and hyperimmunoglobulinemia M, N. Engl. J. Med. 314:409 (1986).PubMedCrossRefGoogle Scholar
  31. 31.
    J.P. DiSanto, J.Y. Bonnefoy, J.F. Gauchat, A. Fischer, and G. de Saint Basile, CD40 ligand mutations in X-linked immunodeficiency with hyper-IgM, Nature 361:541 (1993).PubMedCrossRefGoogle Scholar
  32. 32.
    U. Korthauer, D. Graf, H.W. Mages, F. Briere, M. Padayachee, S. Malcolm, A.G. Ugazio, L.D. Notarangelo, R.J. Levinsky, and R.A. Kroczek, Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper IgM, Nature 361:539 (1993).PubMedCrossRefGoogle Scholar
  33. 33.
    D. Levitt, P. Haber, K. Rich, and M.D. Cooper, Hyper IgM immunodeficiency. A primary dysfunction of B lymphocyte isotype switching, J. Clin. Invest. 72:1650 (1983).PubMedCrossRefGoogle Scholar
  34. 34.
    R.W. Hendriks, M.E. Kraakman, I.W. Craig, T. Espanol, and R.K. Schuurman, Evidence that in X-linked immunodeficiency with hyperimmunoglobulinemia M the intrinsic immunoglobulin heavy chain class switch mechanism is intact, Eur. J. Immunol. 20:2603 (1990).PubMedCrossRefGoogle Scholar
  35. 35.
    W.C. Fanslow, D. Anderson, K.H. Grabstein, E.A. Clark, D. Cosman, and R.J. Armitage, Soluble forms of CD40 inhibit biological responses of human B cells., J. Immunol. 149:655 (1992).PubMedGoogle Scholar
  36. 36.
    R.J. Armitage, T.W. Tough, B.M. Macduff, W.C. Fanslow, M.K. Spriggs, F. Ramsdell, and M.R. Alderson, CD40 ligand is a T-cell growth factor, Eur. J. Immunol. 23:2326 (1993).PubMedCrossRefGoogle Scholar
  37. 37.
    W.C. Fanslow, K.N. Clifford, M. Seaman, M.R. Alderson, M.K. Spriggs, R.J. Armitage, and F. Ramsdell, Recombinant CD40-ligand exerts potent biological effects on T cells, J. Immunol, in press (1994).Google Scholar
  38. 38.
    H.-J. Gruss, D. Hirschstein, B. Wright, D. Ulrich, M.A. Caligiuri, L. Strockbine, R.J. Armitage, and S.K. Dower, Expression and function of CD40 on Hodgkin and Reed-Sternberg cells and the possible relevance for Hodgkin’s disease, Blood, in press (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Melanie K. Spriggs
    • 1
  1. 1.Immunex Research and Development CorporationMolecular BiologySeattleUSA

Personalised recommendations