Mechanism of B Cell Antigen Receptor Function: Transmembrane Signaling and Triggering of Apoptosis

  • Anthony L. DeFranco
  • Paul R. Mittelstadt
  • Jonathan H. Blum
  • Tracy L. Stevens
  • Debbie A. Law
  • Vivien W.-F. Chan
  • Shaun P. Foy
  • Sandip K. Datta
  • Linda Matsuuchi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 365)


The B cell antigen receptor (BCR) plays a key role in regulating B cell development, activation, and inactivation1. The transmembrane form of μ is required for proper B cell development2, as is the surrogate light chain encoded by the λ5 gene3. Once the immunoglobulin (Ig) genes have been rearranged properly, the B cell precursor expresses the conventional form of the BCR. If this immature B cell contacts antigen before leaving the bone marrow, it continues to rearrange the Ig light chain genes4,5. This response, referred to as receptor editing, is presumably an effort to change antigen specificity away from what would usually be self-reactivity. If unsuccessful in altering its antigen specificity, this auto-reactive immature B cell is inactivated either by cell death6–8 or clonal anergy9.


Tyrosine Phosphorylation Cytoplasmic Domain Antigen Receptor Chimeric Protein Cell Antigen Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.L. DeFranco, Structure and function of the B cell antigen receptor, Ann. Rev. Cell Biol. 9: 377 (1993).PubMedCrossRefGoogle Scholar
  2. 2.
    D. Kitamura, J. Roes, R. Kuhn, and K. Rajewsky, A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin μ chain, Nature 350:423 (1991).PubMedCrossRefGoogle Scholar
  3. 3.
    D. Kitamura, A. Kudo, S. Schaal, W. Muller, F. Melchers, and K. Rajewsky, A critical role of λ5 protein in B cell development., Cell 69: 823 (1992).PubMedCrossRefGoogle Scholar
  4. 4.
    D. Gay, T. Saunders, S. Camper, and M. Weigert, Receptor editing: an approach by autoreactive B cells to escape tolerance, J. Exp. Med. 177: 999 (1993).PubMedCrossRefGoogle Scholar
  5. 5.
    S.L. Tiegs, D.M. Russell, and D. Nemazee, Receptor editing in self-reactive bone marrow B cells, J. Exp. Med. 177: 1009 (1993).PubMedCrossRefGoogle Scholar
  6. 6.
    D.M. Russell, Z. Dembic, G. Morahan, J.F. Miller, K. Burki, and D.A. Nemazee, Peripheral deletion of self-reactive B cells, Nature 354: 308 (1991).PubMedCrossRefGoogle Scholar
  7. 7.
    S.B. Hartley, J. Crosbie, R. Brink, A.B. Kantor, A. Basten, and C.C. Goodnow, Elimination from peripheral lymphoid tissues of self-reactive B lymphocytes recognizing membrane-bound antigens, Nature 353: 765 (1991).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Murakami, T. Tsubata, M. Okamoto, A. Shimizu, S. Kumagai, H. Imura, and T. Honjo, Antigen-induced apoptotic death of Ly-1 B cells responsible for autoimmune disease in transgenic mice, Nature 357: 77 (1992).PubMedCrossRefGoogle Scholar
  9. 9.
    C.C. Goodnow, J. Crosbie, S. Adelstein, T.B. Lavoie, S J. Smith-Gill, R. Brink, H. Pritchard-Briscoe, J.S. Wotherspoon, R.H. Loblay, K. Raphael, R.J. Trent, and A. Basten, Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice, Nature 334:676 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    A.L. DeFranco, Molecular aspects of B-lymphocyte activation, Ann. Rev. Cell Biol. 3: 143 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    Y.-J. Liu, D.E. Joshua, G.T. Williams, C.A. Smith, J. Gordon, and I.C.M. MacLennan, Mechanism of antigen-driven selection in germinal centres, Nature 342: 929 (1989).PubMedCrossRefGoogle Scholar
  12. 12.
    M. Reth, Antigen receptors on B lymphocytes, Ann. Rev. Immunol. 10: 97 (1992).CrossRefGoogle Scholar
  13. 13.
    G.T. Williams, A.R. Venkitaraman, D.J. Gilmore, and M.S. Neuberger, The sequence of the mu transmembrane segment determines the tissue specificity of the transport of immunoglobulin M to the cell surface, J. Exp. Med. 171: 947 (1990).PubMedCrossRefGoogle Scholar
  14. 14.
    A.R. Venkitaraman, G.T. Williams, P. Dariavach, and M.S. Neuberger, The B cell antigen receptor of the five immunoglobulin classes, Nature 352: 777 (1991).PubMedCrossRefGoogle Scholar
  15. 15.
    L. Matsuuchi, M.R. Gold, A. Travis, R. Grosschedl, A.L. DeFranco, and R.B. Kelly, The membrane IgM-associated proteins MB-1 and Ig-β are sufficient to promote surface expression of a partially functional B-cell antigen receptor in a nonlymphoid cell line, Proc. Natl. Acad. Sci. USA 89: 3404 (1992).PubMedCrossRefGoogle Scholar
  16. 16.
    B J. Cherayil, K. MacDonald, G.L. Waneck, and S. Pillai, Surface transport and internalization of the membrane IgM H chain in the absence of the Mb-1 and B29 proteins, J. Immunol. 151: 11 (1993).PubMedGoogle Scholar
  17. 17.
    T.L. Stevens, J.B. Blum, S.P. Foy, L. Matsuuchi, and A.L. DeFranco, A mutation of the μ transmembrane that disrupts ER retention: effects on association with accessory proteins and signal transduction, J. Immunol. 152: in press (1994).Google Scholar
  18. 18.
    E. Degen and D.B. Williams, Participation of a novel 88-kD protein in the biogenesis of murine class I histocompatability molecules, J. Cell Biol. 112: 1099 (1991).PubMedCrossRefGoogle Scholar
  19. 19.
    F. Hochstenbach, V. David, S. Watkins, and M.B. Brenner, Endoplasmic reticulum resident protein of 90 kilodaltons associates with the T-and B-cell antigen receptors and major histocompatability antigens during their assembly, Proc. Natl. Acad. Sci. USA 89:4734 (1992).PubMedCrossRefGoogle Scholar
  20. 20.
    J. Hombach, T. Tsubata, L. Leclercq, H. Stappert, and M. Reth, Molecular components of the B-cell antigen receptor complex of the IgM class, Nature 343: 760 (1990).PubMedCrossRefGoogle Scholar
  21. 21.
    J.H. Blum, T.L. Stevens, and A.L. DeFranco, Role of the μ immunoglobulin heavy chain transmembrane and cytoplasmic domains in B cell antigen receptor expression and signal transduction, J. Biol. Chem. 27238-27247: (1993).Google Scholar
  22. 22.
    A.C. Shaw, R.N. Mitchell, Y.K. Weaver, J. Campos-Torres, A.K. Abbas, and P. Leder, Mutations of immunoglobulin transmembrane and cytoplasmic domains: Effects on intracellular signaling and antigen presentation, Cell 63: 381 (1990).PubMedCrossRefGoogle Scholar
  23. 23.
    R.N. Mitchell, A.C. Shaw, Y.K. Weaver, P. Leder, and A.K. Abbas, Cytoplasmic tail deletion converts membrane immunoglobulin to a phosphatidylinositol-linked form lacking signaling and efficient antigen internalization functions, J. Biol. Chem. 266: 8856 (1991).PubMedGoogle Scholar
  24. 24.
    M. Sanchez, Z. Misulovin, A.L. Burkhardt, S. Mahajan, T. Costa, R. Franke, J.B. Bolen, and M. Nussenzweig, Signal transduction by immunoglobulin is mediated through Ig-α and Ig-β, J. Exp. Med. 178: 1049 (1993).PubMedCrossRefGoogle Scholar
  25. 25.
    W.K. Tsang, J. Mizuguchi, Y. Ishida, C. Watson, T. Chused, J. Inman, D.H. Margulies, and W.E. Paul, Failure of signaling through a chimeric class I-immunoglobulin molecule expressed on the surface of transfected B lymphoma cells and cells of transgenic mice, Cell. Immunol. 143: 80 (1992).PubMedCrossRefGoogle Scholar
  26. 26.
    A.L. DeFranco, Tyrosine phosphorylation and the mechanism of signal transduction by the B-lymphocyte antigen receptor, Eur. J. Biochem. 210: 381 (1992).PubMedCrossRefGoogle Scholar
  27. 27.
    R.H. Carter, D.J. Park, S.G. Rhee, and D.T. Fearon, Tyrosine phosphorylation of phospholipase C induced by membrane immunoglobulin in B lymphocytes, Proc. Natl. Acad. Sci. USA 88: 2745 (1991).PubMedCrossRefGoogle Scholar
  28. 28.
    W.M. Hempel, R.C. Schatzman, and A.L. DeFranco, Tyrosine phosphorylation of phospholipase C γ2 upon crosslinking of membrane Ig on murine B lymphocytes, J. Immunol. 148: 3021 (1992).PubMedGoogle Scholar
  29. 29.
    K.M. Coggeshall, J.C. McHugh, and A. Altman, Predominant expression and activation-induced tyrosine phosphorylation of phospholipase C-72 in B lymphocytes, Proc. Natl. Acad. Sci. USA 90: 5660 (1992).CrossRefGoogle Scholar
  30. 30.
    S.B. Kanner, J.P. Deans, and J.A. Ledbetter, Regulation of CD3-induced phospholipase C-gammal (PLCγl) tyrosine phosphorylation by CD4 and CD45 receptors, Immunology 75: 441 (1992).PubMedGoogle Scholar
  31. 31.
    CM. Roifman and G. Wang, Phospholipase C-γl and phospholipase C-γ2 are substrates of the B cell antigen receptor associated protein tyrosine kinase, Biochem. Biophys. Res. Commun. 183: 411 (1992).PubMedCrossRefGoogle Scholar
  32. 32.
    C.F. Webb, C. Nakai, and P.W. Tucker, Immunoglobulin receptor signalling depends on the carboxyl terminus but not the heavy-chain class, Proc. Natl. Acad. Sci. USA 86: 1977 (1989).PubMedCrossRefGoogle Scholar
  33. 33.
    P.M. Dubois, J. Stepinski, J. Urbain, and C.H. Sibley, Role of the transmembrane and cytoplasmic domains of surface IgM in endocytosis and signal transduction, Eur. J. Immunol. 22: 851 (1992).PubMedCrossRefGoogle Scholar
  34. 34.
    S.A. Grupp, K. Campbell, R.N. Mitchell, J.C. Cambier, and A.K. Abbas, Signaling-defective mutants of the B lymphocyte antigen receptor fail to associate with Ig-α and Ig-β/γ, J. Biol. Chem. 268: 25776 (1993).PubMedGoogle Scholar
  35. 35.
    J.C. Cambier, Signal transduction by T-and B-cell antigen receptors: converging structures and concepts, Curr. Opin. Immunol. 4: 257 (1992).PubMedCrossRefGoogle Scholar
  36. 36.
    L.E. Samelson and R.D. Klausner, Tyrosine kinases and tyrosine-based activation motifs, J. Biol. Chem. 267: 24913 (1992).PubMedGoogle Scholar
  37. 37.
    A. Weiss, T cell antigen receptor signal transduction: A tale of tails and cytoplasmic protein-tyrosine kinases, Cell 73: 209 (1993).PubMedCrossRefGoogle Scholar
  38. 38.
    B. Irving and A. Weiss, The cytoplasmic domain of the T cell receptor ζ chain is sufficient to couple to receptor-associated signal transduction pathways, Cell 64: 891 (1991).PubMedCrossRefGoogle Scholar
  39. 39.
    B.A. Irving, A.C. Chan, and A. Weiss, Functional characterization of a signal transducing motif present in the T cell antigen receptor ζ chain, J. Exp. Med. 177:1093 (1993).PubMedCrossRefGoogle Scholar
  40. 40.
    C. Romeo and B. Seed, Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides, Cell 64: 1037 (1991).PubMedCrossRefGoogle Scholar
  41. 41.
    C. Romeo, M. Amiot, and B. Seed, Sequence requirements for induction of cytolysis by the T cell antigen/Fc receptor ζ chain, Cell 68: 889 (1992).PubMedCrossRefGoogle Scholar
  42. 42.
    A.-M.K. Wegener, F. Letourneur, A. Hoeveler, T. Brocker, F. Luton, and B. Malissen, The T cell receptor/CD3 complex is composed of at least two autonomous transduction molecules, Cell 68: 83 (1992).PubMedCrossRefGoogle Scholar
  43. 43.
    F. Letourneur and R.D. Klausner, Activation of T cells by a tyrosine kinase activation domain in the cytoplasmic tail of CD3 ε, Science 255: 79 (1992).PubMedCrossRefGoogle Scholar
  44. 44.
    K.-M. Kim, G. Alber, P. Weiser, and M. Reth, Differential signaling through the Ig-α and Ig-β components of the B cell antigen receptor, Eur. J. Immunol. 23: 911 (1993).PubMedCrossRefGoogle Scholar
  45. 45.
    D.A. Law, V.W.F. Chan, S.K. Datta, and A.L. DeFranco, B-cell antigen receptor motifs have redundant signalling capabilities and bind the tyrosine kinases PTK72, Lyn and Fyn, Curr. Biol. 3: 645 (1993).PubMedCrossRefGoogle Scholar
  46. 46.
    W.J. Fantl, J.A. Escobedo, G.A. Martin, C.W. Turck, M. del Rosario, F. McCormick, and L.T. Williams, Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways, Cell 69: 413 (1992).PubMedCrossRefGoogle Scholar
  47. 47.
    A. Kazlauskas, A. Kashishian, J.A. Cooper, and M. Valius, GTPase-activating protein and phosphatidylinositol 3-kinase bind to a distinct region of the platelet-derived growth factor receptor β subunit, Mol. Cell. Biol. 12: 2534 (1992).PubMedGoogle Scholar
  48. 48.
    M. Rozakis-Adcock, J. McGlade, G. Mbamalu, G. Pelicci, R. Daly, W. Li, A. Batzer, S. Thomas, J. Brugge, P.G. Pelicci, J. Schlessinger, and T. Pawson, Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases, Nature 360: 689 (1992).PubMedCrossRefGoogle Scholar
  49. 49.
    E.J. Lowenstein, R.J. Daly, A.G. Batzer, W. Li, B. Margolis, R. Lammers, A. Ullrich, E. Skolnik, D. Bar-Sagi, and J. Schlessinger, The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling, Cell 70: 431 (1992).PubMedCrossRefGoogle Scholar
  50. 50.
    J.P. Olivier, T. Raabe, M. Henkemeyer, B. Dickson, G. Mbamalu, B. Margolis, J. Schlessinger, E. Hafen, and T. Pawson, A Drosophila SH2-SH3 adapter protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos, Cell 73:179 (1993).PubMedCrossRefGoogle Scholar
  51. 51.
    Z. Songyang, S.E. Shoelson, M. Chaudhuri, G. Gish, T. Pawson, W.G. Haser, F. King, T. Roberts, S. Ratnofsky, R.J. Lechleider, B.G. Neel, R.B. Birge, J.E. Fajardo, M.M. Chou, H. Hanafusa, B. Schaffhausen, and L.C. Cantley, SH2 domains recognize specific phosphoprotein sequences, Cell 72: 767 (1993).PubMedCrossRefGoogle Scholar
  52. 52.
    J.E. Hutchcroft, M.L. Harrison, and R.L. Geahlen, B lymphocyte activation is accompanied by phosphorylation of a 72-kDa protein-tyrosine kinase, J. Biol. Chem. 266: 14846 (1991).PubMedGoogle Scholar
  53. 53.
    J.E. Hutchcroft, M.L. Harrison, and R.L. Geahlen, Association of the 72-kDa protein-tyrosine kinase PTK72 with the B cell antigen receptor, J. Biol Chem. 267: 8613 (1992).PubMedGoogle Scholar
  54. 54.
    W. Kolanus, C. Romeo, and B. Seed, T cell activation by clustered tyrosine kinases, Cell 74: 171 (1993).PubMedCrossRefGoogle Scholar
  55. 55.
    J.M. Pesando, L.S. Bouchard, and B. McMaster, CD19 is functionally and physically associated with surface immunoglobulin, J. Exp. Med. 170: 2159 (1989).PubMedCrossRefGoogle Scholar
  56. 56.
    R.J. Schulte, M.-A. Campbell, W.H. Fischer, and B.M. Sefton, Tyrosine phosphorylation of CD22 during B cell activation, Science 258:1001 (1992).PubMedCrossRefGoogle Scholar
  57. 57.
    D.A. Tuveson, R.H. Carter, S.P. Soltoff, and D.T. Fearon, CD19 of B cells as a surrogate kinase insert region to bind phosphatidylinositol 3-kinase, Science 260:986 (1993).PubMedCrossRefGoogle Scholar
  58. 58.
    C. Leprince, K.E. Draves, R.L. Geahlen, J.A. Ledbetter, and E.A. Clark, CD22 associates with the human surface IgM-B cell antigen receptor complex, Proc. Natl. Acad. Sci. USA 90: 3236 (1993).PubMedCrossRefGoogle Scholar
  59. 59.
    P. Mittelstadt and A.L. DeFranco, Induction of early-response genes by cross-linking membrane immunoglobulin on B lymphocytes, J. Immunol. 150: 4822 (1993).PubMedGoogle Scholar
  60. 60.
    H. Sun, C.H. Charles, L.F. Lau, and N.K. Tonks, MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo, Cell 75: 487 (1993).PubMedCrossRefGoogle Scholar
  61. 61.
    Y. Shi, J.M. Glynn, LJ. Guilbert, T.G. Cotter, R.P. Bissonette, and D.R. Green, Role for c-myc in activation-induced apoptotic cell death in T cell hybridomas, Science 257: 212 (1992).PubMedCrossRefGoogle Scholar
  62. 62.
    G.I. Evans, A.H. Wyllie, C.S. Gilbert, T.D. Littlewood, H. Land, M. Brooks, C.M. Waters, L.Z. Penn, and D.C. Hancock, Induction of apoptosis in fibroblasts by c-myc protein, Cell 69: 119 (1992).CrossRefGoogle Scholar
  63. 63.
    J.D. Woronicz, B. Calnan, V. Ngo, and A. Winoto, Requirement for the orphan steroid receptor Nur77 in apoptosis of T-cell hybridomas, Nature 367: 277 (1994).PubMedCrossRefGoogle Scholar
  64. 64.
    Z.-G. Liu, S.W. Smith, K.A. McLaughlin, L.M. Schwartz, and B.A. Osborne, Apoptotic signals delivered through the T-cell receptor of a T-cell hybrid require the immediate-early gene nur77, Nature 367: 281 (1994).PubMedCrossRefGoogle Scholar
  65. 65.
    J.E. McCormack, V.H. Pepe, R.B. Kent, M. Dean, A. Marshak-Rothstein, and G.E. Sonenshein, Specific regulation of c-myc oncogene expression in a murine B-cell lymphoma, Proc. Natl. Acad. Sci. USA 81: 5546 (1984).PubMedCrossRefGoogle Scholar
  66. 66.
    G. Fischer, S.C. Kent, L. Joseph, D.R. Green, and D.W. Scott, Lymphoma models for B cell activation and tolerance. X. Anti-μ mediated growth arrest and apoptosis of murine B cell lymphomas is prevented by the stabilization of myc, J. Exp. Med. 179: 221 (1994).PubMedCrossRefGoogle Scholar
  67. 67.
    U. Hibner, L.E. Benhamou, P.-A. Cazenave, and P. Sarthou, Signaling of programmed cell death induction in WEHI-231 B lymphoma cells, Eur. J. Immunol. 23: 2821 (1993).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Anthony L. DeFranco
    • 1
    • 2
    • 3
  • Paul R. Mittelstadt
    • 1
    • 3
  • Jonathan H. Blum
    • 1
    • 3
  • Tracy L. Stevens
    • 1
    • 3
  • Debbie A. Law
    • 1
    • 3
  • Vivien W.-F. Chan
    • 2
    • 3
  • Shaun P. Foy
    • 4
  • Sandip K. Datta
    • 1
    • 3
  • Linda Matsuuchi
    • 1
    • 4
  1. 1.Departments of Microbiology & ImmunologyUniversity of CaliforniaSan FranciscoUSA
  2. 2.Biochemistry & BiophysicsUniversity of CaliforniaSan FranciscoUSA
  3. 3.G. W. Hooper FoundationUniversity of CaliforniaSan FranciscoUSA
  4. 4.Department of ZoologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations