Skip to main content

Specific CD45 Isoforms Regulate T Cell Ontogeny and Are Functionally Distinct in Modifying Immune Activation

  • Chapter
Mechanisms of Lymphocyte Activation and Immune Regulation V

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 365))

Abstract

The antigen receptor complex on the cell surface of T lymphocytes is one of the most modular signal transduction systems yet defined. This characteristic emanates from various mechanisms that promote intermolecular associations between the αβ T cell receptor and the enzymes that transduce the intracellular biological signal cascade (reviewed in 1). Among the multiple proteins that regulate cellular responses following T cell receptor (TCR) stimulation, the CD45 tyrosine phosphatase is a crucial effector. T lymphocytes that lack CD45 expression at the cell surface are unable to transmit immunologic activation signals that initiate from TCR interaction with antigen and major histocompatibility (MHC) molecules (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.A. Janeway. The T cell receptor as a multicomponent signaling machine: CD4/CD8 coreceptors and CD45 in T cell activation. Ann. Rev. Immunol. 10:645 (1992).

    Article  CAS  Google Scholar 

  2. J.T. Pingel and M. L. Thomas. Evidence that the leukocyte-common antigen is required for antigen-induced T lymphocyte proliferation. Cell 58:1055 (1989).

    Article  PubMed  CAS  Google Scholar 

  3. M.L. Thomas and L. Lefrancois. Differential expression of the leukocyte common antigen family, Immunol. Today 9:320 (1988).

    Article  PubMed  CAS  Google Scholar 

  4. I.S. Trowbridge, H. Ostergaard, and P. Johnson. CD45: A leukocyte-specific member of the protein tyrosine phosphatase family. Biochem. Biophys. Acta. 1095:46 (1991).

    Article  PubMed  CAS  Google Scholar 

  5. L. Lefrancois and T. Goodman. Developmental sequence of T200 antigen modificationsin murine T cells. J. Immunol. 139:3718 (1987).

    PubMed  CAS  Google Scholar 

  6. A.N. Akbar, L. Terry, A. Timms, P.C.L. Beverley, and G. Janossy. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J. Immunol. 140:2171 (1988).

    PubMed  CAS  Google Scholar 

  7. H.M. Serra, J.F. Krowka, J.A. Ledbetter, and L.M. Pilarski. Loss of CD45R (Lp220) represents a post-thymic T cell differentiation event. J. Immunol. 140:1435 (1988).

    PubMed  CAS  Google Scholar 

  8. MX. Birkeland, P. Johnson, I.S. Trowbridge, and E. Puré. Changes in CD45 isoform expression accompany antigen-induced murine T-cell activation. Proc. Natl. Acad. Sci. USA 86:6734 (1989).

    Article  PubMed  CAS  Google Scholar 

  9. D.M. Rothstein, A. Yamada, S.F. Schlossman, and C. Morimoto. Cyclic regulation of CD45 isoform expression in a long term human CD4+CD45RA+ T cell line. J. Immunol. 146:1175 (1991).

    PubMed  CAS  Google Scholar 

  10. K.S. Hathcock, G. Laszlo, H.B. Dickler, S.O. Sharrow, P. Johnson, I.S. Trowbridge, and R.J. Hodes. Expression of variable exon A-, B-, and C-specific CD45 determinants on peripheral and thymic T cell populations. J. Immunol. 148:19 (1992).

    PubMed  CAS  Google Scholar 

  11. D.M. Rothstein, H. Saito, M. Streuli, S.F. Schlossman, and C. Morimoto. The alternative splicing of the CD45 tyrosine phosphatase is controlled by negative regulatory trans-acting splicing factors. J. Biol. Chem. 267:7139 (1992).

    PubMed  CAS  Google Scholar 

  12. R. Pulido and F. Sanchez-Madrid. Biochemical nature and topographic localization of epitopes defining four distinct CD45 antigen specificities. J. Immunol. 143:1930 (1989).

    PubMed  CAS  Google Scholar 

  13. T.R. Mosmann, H. Cherwinski, M.W. Bond, M.A. Giedlin, and R.L. Coffman. Two types of murine helper T cell clone: I. Definition according to profiles of lymphokine activities and secreted properties. J. Immunol. 136:2348 (1986).

    PubMed  CAS  Google Scholar 

  14. J.A. Byrne, J.L. Butler, and M.D. Cooper. Differential activation requirements for virgin and memory T cells. J. Immunol. 141:3249 (1988).

    PubMed  CAS  Google Scholar 

  15. S. Huet, L. Boumsell, J. Dausset, L. Degos, and A. Bernard. The required nteraction between monocytes and perpiheral blood T-lymphocytes (T-PBL) upon activation via CD2 or CD3. Role of HLA class I molecule from accessory cells and the differential response of T-PBL subsets. Eur. J.Immunol. 18:1187(1988).

    Article  PubMed  CAS  Google Scholar 

  16. K, Bottomly, M. Luqman, L. Greenbaum, S. Carding, J. West, T. Pasqualini, and D.B. Murphy. A monoclonal antibody to murine CD45R distinguishes CD4 T cell populations that produce different cytokines. Eur. J. Immunol. 19:617(1989).

    Article  PubMed  CAS  Google Scholar 

  17. U. Dianzani, M. Luqman, J. Rojo, J. Yagi, J.L. Baron, A. Woods, C.A. Janeway, and K. Bottomly. Molecular assocations on the T cell surface correlate with immunological memory. Eur. J. Immunol. 20:2249 (1990).

    Article  PubMed  CAS  Google Scholar 

  18. M. Luqman, P. Johnson, I. Trowbridge, and K. Bottomly. Differential expression of the alternatively spliced exons of murine CD45 in Th1 and Th2 cell clones. Eur. J. Immunol. 21:17 (1991).

    Article  PubMed  CAS  Google Scholar 

  19. M. Luqman and K. Bottomly. Activation requirements for CD4+ T cells differing in CD45R expression. J. Immunology 149:2300 (1992).

    CAS  Google Scholar 

  20. C.A. Michie, A. McLean, C. Alcock, and P.C.L. Beverley. Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature 360:264 (1992).

    Article  PubMed  CAS  Google Scholar 

  21. C.J. Ong, D. Chui, H.-S. Teh, and J.D. Marth. Thymic CD45 tyrosine phosphatase regulates apoptosis and MHC-restricted negative selection. J. Immunol. 152, in press (1994).

    Google Scholar 

  22. D. Chui, C.J. Ong, P. Johnson, H.-S. Teh, and J.D. Marth. Specific CD45 isoforms differentially regulate T cell receptor signaling. EMBO J., 13:798 (1994).

    PubMed  CAS  Google Scholar 

  23. MP. Cooke, K.M. Abraham, K. A. Forbush, and R.M. Perlmutter. Regulation of T cell receptor signaling by a src family protein-tyrosine kinase (p59fyn). Cell 65:281 (1991).

    Article  PubMed  CAS  Google Scholar 

  24. M. Appleby, J.A. Gross, M.P. Cooke, S.D. Levin, X. Qian, and R.M. Perlmutter. Defective T cell receptor signaling in mice lacking the thymic form of p59fyn. Cell 70:751 (1992).

    Article  PubMed  CAS  Google Scholar 

  25. K.E. Chaffin, C.R. Beals, K.A. Forbush, T.M. Wilkie, M.I. Simon, and R.M. Perlmutter. Dissection of thymocyte signaling pathways by in vivo expression of pertussis-toxin ADP ribosyltransferase. EMBO J. 9:3821 (1990).

    PubMed  CAS  Google Scholar 

  26. K.M. Abraham, S.D. Levin, J.D. Marth, K.A. Forbush, and R.M. Perlmutter. Delayed thymocyte development induced by augmented expression of p56lck. J. Exp. Med. 173:1421 (1991).

    Article  PubMed  CAS  Google Scholar 

  27. C.L. Sentman, J.R. Shutter, D. Hockenbery, O. Kanagawa, and S.J. Korsmeyer. bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67:879 (1991).

    Article  PubMed  CAS  Google Scholar 

  28. J.P. Deans, A.W. Boyd, and L.M. Pilarski. Transitions from high to low molecular weight isoforms of CD45 (T200) involve rapid activation of alternate mRNA splicing and slow turnover of surface CD45R. J. Immunol. 143:1233 (1989).

    PubMed  CAS  Google Scholar 

  29. Y. Minami, F.J. Stafford, J. Lippincott-Schwartz, L.C. Yuan, and R.D. Klausner. Novel. redistribution of an intracellular pool of CD45 accompanies T cell activation. J. Biol. Chem. 266:9222 (1991).

    PubMed  CAS  Google Scholar 

  30. O. Leo, M. Foo, D.H. Sachs, L.E. Samelson, and J.A. Bluestone. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc. Natl. Acad. Sci. USA 84:1374 (1987).

    Article  PubMed  CAS  Google Scholar 

  31. K. Kishihara, J. Penninger, V.A. Wallace, T.M. Kundig, K. Kawai, A. Wakeham, E. Timms, K. Pfeffer, P.S. Ohashi, M.L. Thomas, C. Furlonger, C.J. Paige, and T.W. Mak. Normal B lymphocyte development but impaired T cell maturation in CD45-exon6 protein tyrosine phosphatase-deficient mice. Cell 74:143 (1993).

    Article  PubMed  CAS  Google Scholar 

  32. H.L. Ostergaard, D.A. Shackelford, T.R. Hurley, P. Johnson, R. Hyman, B.M. Sefton, and I.S. Trowbridge. Expression of CD45 alters phosphorylation of the lck-encoded tyrosine protein kinase in murine lymphoma cells. Proc. Natl. Acad. Sci. USA 86:8959 (1989).

    Article  PubMed  CAS  Google Scholar 

  33. E.D. Cahir McFarland, T.R. Hurley, J.T. Pingel, B.M. Sefton, A. Shaw, and M.L. Thomas. Correlation between Src family member regulation by the protein-tyrosine-phosphatase CD45 and transmembrane signaling through the T-cell receptor. Proc. Natl. Acad. Sci. USA 90:1402 (1993).

    Article  CAS  Google Scholar 

  34. N. Killeen, A. Moriarty, H.-S. Teh, and D.R. Littman. Requirement for CD8-major histocompatibility complex class I interaction in positive and negative selection of developing T cells. J. Exp. Med. 176:89 (1992).

    Article  PubMed  CAS  Google Scholar 

  35. N.S.C. van Oers, A.M. Garvin, C.B. Davis, K.A. Forbush, D.A. Carlow, D.R. Littman, R.M. Perlmutter, and H.-S. Teh. Disruption of CD8-dependent negative and positive selection is correlated with a decrease in association between CD8 and the protein tyrosine kinase, p56lck. Eur. J. Immunol. 22:735 (1992).

    Article  PubMed  Google Scholar 

  36. A.C. Carrera, C. Baker, T.M. Roberts, and D.M. Pardoll. Tyrosine kinase triggering in thymocytes undergoing positive selection. Eur. J. Immunol. 22:2289 (1992).

    Article  PubMed  CAS  Google Scholar 

  37. K. Nakayama and D.Y. Loh. No requirement for p56lck in the antigen-stimulated clonal deletion ot thymocytes. Science 257:94 (1992).

    Article  PubMed  CAS  Google Scholar 

  38. P.C. Orban, D. Chui, and J.D. Marth. Tissue-and site-specific DNA recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89:6861 (1992).

    Article  PubMed  CAS  Google Scholar 

  39. R.T. Kubo, W. Born, J.W. Kappler, P. Marrack, and M. Pigeon. Characterization of a monoclonal antibody which detects all murine αβ T cell receptors. J. Immunol. 142:2736 (1989).

    PubMed  CAS  Google Scholar 

  40. A.C. Chan, B.A. Irving, J.D. Fraser, and A. Weiss. The ζ chain is associated with a tyrosine kinase and upon T-cell antigen receptor stimulation associates with ZAP-70, a 70-kDa tyrosine phosphoprotein. Proc. Natl. Acad. Sci USA 88:9166 (1991).

    Article  PubMed  CAS  Google Scholar 

  41. A.C. Chan, M. Iwashima, C.W. Turck, and A. Weiss. ZAP-70: A 70 kd protein-tyrosine kinase that associates with the TCR ζ chain. Cell 71:649 (1992).

    Article  PubMed  CAS  Google Scholar 

  42. B. Schraven, H. Kirchgessner, B. Gaber, Y. Samstag, and S. Meuer. A functional complex is formed in human T lymphocytes between the protein tyrosine phosphastase CD45, the protein tyrosine kinase p56lck and pp32, a possible common substrate. Eur. J. Immunol. 21:2469 (1991).

    Article  PubMed  CAS  Google Scholar 

  43. B. Schraven, A. Schirren, H. Kirchgessner, B. Siebert, and S.C. Meuer. Four CD45/P56lck associated phosphoproteins (pp29-pp32) undergo alterations in human T cell activation. Eur. J. Immunol. 22:1857 (1992).

    Article  PubMed  CAS  Google Scholar 

  44. A. Takeda, J.J. Wu, and A.L. Maizel. Evidence for monomeric and dimeric forms of CD45 associated with a 30-kDa phosphorylated protein. J. Biol Chem. 267:16651 (1992).

    PubMed  CAS  Google Scholar 

  45. P.S. Linsley and J.A. Ledbetter. The role of the CD28 receptor during T cell responses to antigen. Ann. Rev. Immunol. 11:191 (1993).

    Article  CAS  Google Scholar 

  46. D.L. Rosenstreich and S.B. Mizel. Signal requirements for T lymphocyte activation. I. Replacement of macrophage function with phorbol myristic acetate. J. Immunol. 123:1749 (1979).

    PubMed  CAS  Google Scholar 

  47. M.K. Newell, L.J. Haughn, C.R. Maroun, and M.H. Julius. Death of mature T cells by separate ligation of CD4 and the T cell receptor for antigen. Nature 347:286 (1990).

    Article  PubMed  CAS  Google Scholar 

  48. L. Haughn, S. Gratton, L. Caron, R.-P. Sekaly, A. Veillette, and M. Julius. Association of tyrosine kinase p56lck with CD4 inhibits the induction of growth through the αβ T-cell receptor. Nature 358:328 (1992).

    Article  PubMed  CAS  Google Scholar 

  49. E. Shivnan, M. Biffen, M. Shiroo, E. Pratt, M. Glennie, and D. Alexander. Does co-aggregation of the CD45 and CD3 antigens inhibit T cell antigen receptor complex-mediated activation of phospholipase C and protein kinase C? Eur. J. Immunol. 22:1055 (1992).

    Article  PubMed  CAS  Google Scholar 

  50. N. Glaichenhaus, N. Shastri, D.R. Littman, and J.M. Turner. Requirement for association of p56lck with CD4 in antigen-specific signal transduction in T cells. Cell 64:511 (1991).

    Article  PubMed  CAS  Google Scholar 

  51. K. Eichmann, J.I. Jonsson, I. Falk, and F. Emmrich. Effective activation of resting mouse T lymphocytes by cross-linking submitogenic concentrations of the T cell antigen receptor with either Lyt-2 or L3T4. Eur. J. Immunol. 17:643 (1987).

    Article  PubMed  CAS  Google Scholar 

  52. T. Owens, d.S.G.B. Fazekas, and J.F.A.P. Miller. Coaggregation of the T-cell receptor with CD4 and other T-cell surface molecules enhances T-cell activation. Proc. Natl. Acad. Sci. USA 84:9209 (1987).

    Article  PubMed  CAS  Google Scholar 

  53. T.L. Collins, S. Uniyal, J. Shin, J.L. Strominger, R.S. Mittler, and S J. Burakoff. p56lck association with CD4 is required for the interaction between CD4 and the TCR/CD3 complex and for optimal antigen stimulation. J. Immunol. 148:2159 (1992).

    PubMed  CAS  Google Scholar 

  54. S. Volarevic, B.B. Niklinska, C.M. Burns, C.H. June, A.M. Weissman, and J.D. Ashwell. Regulation of TCR signaling by CD45 lacking transmembrane and extracellular domains. Science 260:541 (1993).

    Article  PubMed  CAS  Google Scholar 

  55. R.R. Hovis, J.A. Donovan, M.A. Musci, D.G. Motto, F.D. Goldman, S.E. Ross, and G.A. Koretzky. Rescue of signaling by a chimeric protein containing the cytoplasmic domain of CD45. Science 260:544 (1993).

    Article  PubMed  CAS  Google Scholar 

  56. T. Chiba, Y. Nagata, M. Machide, A. Kishi, H. Amanuma, M. Sugiyama, and K. Todokoro. Tyrosine kinase activation through the extracellular domains of cytokine receptors. Nature 362:646 (1993).

    Article  PubMed  CAS  Google Scholar 

  57. T.R. Hurley, K. Luo, and B.M. Sefton. Activators of protein kinase C induce dissociation of CD4, but not CD8, from p56lck. Science 245, 407–409 (1989).

    Article  PubMed  CAS  Google Scholar 

  58. J.D. Marth, R. Peet, E.G. Krebs, and R.M. Perlmutter. A lymphocyte-specific protein tyrosine kinase gene is rearranged and overexpressed in the murine T cell lymphoma LSTRA. Cell 43:393 (1985).

    Article  PubMed  CAS  Google Scholar 

  59. J.D. Marth, D.B. Lewis, C.B. Wilson, M.E. Gearn, E.G. Krebs, and R.M. Perlmutter. Regulation of pp56lck during T-cell activation: functional implications for the src-like protein tyrosine kinases. EMBO J. 9:2727 (1987).

    Google Scholar 

  60. W. Swat, L. Ignatowicz, and P. Kisielow. Detection of apoptosis of immature CD4+8+ thymocytes by flow cytometry. J. Immunol. Methods 137:79 (1991).

    Article  PubMed  CAS  Google Scholar 

  61. W. Swat, L. Ignatowicz, H. von Boehmer, and P. Kisielow. Clonal deletion of immature CD4+8+ thymocytes in suspension culture by extrathymic antigen-presenting cells. Nature 351:150 (1991).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marth, J.D., Ong, C.J., Chui, D. (1994). Specific CD45 Isoforms Regulate T Cell Ontogeny and Are Functionally Distinct in Modifying Immune Activation. In: Gupta, S., Paul, W.E., DeFranco, A., Perlmutter, R.M. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation V. Advances in Experimental Medicine and Biology, vol 365. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0987-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0987-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0989-3

  • Online ISBN: 978-1-4899-0987-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics