Control of Lymphopoiesis by Non-Receptor Protein Tyrosine Kinases

  • Roger M. Perlmutter
  • Steven J. Anderson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 365)

Abstract

Maintenance of a satisfactory immune system requires the daily generation of millions of lymphocytes from immature progenitor cells that reside (in adult mammals) in the bone marrow. Three fundamental processes underlie lymphopoiesis. First, a small population of hematopoietic stem cells (estimated to represent something less than 0.1% of bone marrow cells) gives rise continuously to mature daughter cells through successive, self-regenerating cell divisions (see ref. 1 for a review of hematopoietic stem cells). Second, cells committed to the lymphoid lineages must colonize specialized stromal cell environments wherein extrinsic cues are provided that direct maturation. The maturation of B cell precursors occurs in mammalian bone marrow and can be observed using in vitro culture systems containing well-characterized bone marrow-derived stromal cells (2). Similarly, T lymphocyte maturation, which for conventional T cells takes place in the thymus, can be modelled in vitro or in fetal thymic organ culture (3). Detailed analysis of T and B cell development has established that precursor cells proceed through a series of clearly defined maturation steps, giving rise to intermediate cell populations that display characteristic cell surface molecules. Thus the third fundamental process underlying lymphopoiesis is the regulated maturation of committed progenitors through discrete developmental checkpoints.

Keywords

Cell Receptor Antigen Receptor Cell Antigen Receptor Thymocyte Development Allelic Exclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ikuta, K., Ichida, N., Friedman, J., and Weissman, I. L., 1992, Lymphocyte development from stem cells, Ann Rev. Immunol. 10:759.CrossRefGoogle Scholar
  2. 2.
    Saffran, D.C., Faust, E.A., and Witte, O.N., 1992, Establishment of a reproducible culture technique for the selective growth of B cell progenitors, Curr. Top. Microbiol. Immunol. 182: 37.PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson, G., Jenkinson, E.J., Moore, N.C., and Owen, J.J., 1993, MHC class II-positive epithelium and mesenchyme cells are both required for T cell development in the thymus, Nature 362: 70.PubMedCrossRefGoogle Scholar
  4. 4.
    Mombaerts, P., Clarke, A.R., Rudnicki, M.A., Iacomini, J., Itohara, S., Lafaille, JJ., Wang, L., Ichikawa, Y., Jaenisch, R., Hooper, M.L., and Tonegawa, S., 1992b, Mutations in T cell antigen receptor genes a and β block thymocyte development at different stages, Nature 360:225.PubMedCrossRefGoogle Scholar
  5. 5.
    Kitamura, D., Roes, J., Kuhn, R., and Rajewsky, K., 1991, A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin μ gene, Nature 350:423.PubMedCrossRefGoogle Scholar
  6. 6.
    Rocha, B., Vassalli, P., and Guy-Grand, D., 1992, The extrathymic T cell development pathway, Immunol. Today 13:449.PubMedCrossRefGoogle Scholar
  7. 7.
    Petrie, H.T., Hugo, P., Scollay, R., and Shortman, K., 1990, Linkage relationships and developmental kinetics of immature thymocytes: CD3, CD4 and CD8 acquisition in vivo and in vitro, J. Exp. Med. 172:1583.PubMedCrossRefGoogle Scholar
  8. 8.
    Godfrey, D.I., and Zlotnik, A., 1993, Control points in early T cell development, Immunol. Today 14:547.PubMedCrossRefGoogle Scholar
  9. 9.
    Egerton, M., Scollay, R., and Shortman, K., 1990, Kinetics of mature T cell development in the thymus, Proc. Natl. Acad. Sci. USA 87:2579.PubMedCrossRefGoogle Scholar
  10. 10.
    Hogquist, K.A., Jameson, S.C., Heath, W.R., Howard, J.L., Bevan, M.J., and Carbone, F.R., 1994, T cell receptor antagonist peptides induce positive selection, Cell 76:17.PubMedCrossRefGoogle Scholar
  11. 11.
    Kronenberg, M., Siu, G., and Hood, L.E., 1986, Organization and assembly of T cell receptor genes, Ann. Rev. Immunol. 4:529.CrossRefGoogle Scholar
  12. 12.
    Uematsu, Y., Ryser, S., Dembic, Z., Borgulya, P., Krimpenfort, P., Berns, A., von Boehmer, H., and Steinmetz, M., 1988, In transgenic mice the introduced functional T cell receptor β gene prevents expression of endogenous β genes, Cell 52:831.PubMedCrossRefGoogle Scholar
  13. 13.
    Krimpenfort, P., Ossendorp, F., Borst, J., Melief, C., and Berns, A., 1989, T cell depletion in transgenic mice carrying a mutant gene for TCRβ, Nature 341:742.PubMedCrossRefGoogle Scholar
  14. 14.
    Nussenzweig, M.C., Shaw, A.C., Sinn, E., Danner, D.B., Holmes, K.L., Morse, H.C., III, and Leder, P., 1987, Allelic exclusion in transgenic mice expressing the membrane form of immunoglobulin μ,Science 236:816.PubMedCrossRefGoogle Scholar
  15. 15.
    Malissen, M., Trucy, J., Jouvin-Marche, E., Cazanave, P.A., Scollay, R., and Malissen, B., 1992, Regulation of TCR a and β gene allelic exclusion during T cell development, Immunol. Today 13:315.PubMedCrossRefGoogle Scholar
  16. 16.
    Mombaerts, P., Iacomini, J., Johnson, R.S., Herrup, K., Tonegawa, S., and Papaioannov, V.E., 1992a, RAG-1-deficient mice have no mature T and B lymphocytes, Cell 68: 869.PubMedCrossRefGoogle Scholar
  17. 17.
    Shinkai, Y., Rathbun, G., Lam, K-P., Oltz, E.M., Stewart, V., Mendelsohn, M., Charron, J., Datta, ML, Young, F., Stall, A.M., and Alt, F.W., 1992, RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrrangement, Cell 68:855.PubMedCrossRefGoogle Scholar
  18. 18.
    Shinkai, Y., Koyasu, S., Nakayama, K., Murphy, K.M., Loh, D.Y., Reinherz, E.L., and Alt, F.W., 1993, Restoration of T cell development in RAG-2-deficient mice by functional TCR transgenes, Science 259:822.PubMedCrossRefGoogle Scholar
  19. 19.
    Levelt, C.N., Ehrfeld, A., and Eichmann, K., 1993a, Regulation of thymocyte development through CD3.I. Timepoint of ligation of CD3ε determines clonal deletion or induction of developmental program, J. Exp. Med. 177:707.PubMedCrossRefGoogle Scholar
  20. 20.
    Levelt, C.N., Mombaerts, P., Iglesias, A., Tonegawa, S., and Eichmann, K., 1993b, Restoration of early thymocyte development in T cell receptor β-chain-deficient mutant mice by transmembrane signaling through CD3ε, Proc. Natl. Acad. Sci. USA 90:11401.PubMedCrossRefGoogle Scholar
  21. 21.
    Malissen, M., Gillet, A., Rocha, B., Trucy, J., Vivier, E., Boyer, C., Kontgen, F., Brun, N., Mazza, G., Spanopoulou, E., Guy-Grand, D., and Malissen, B., 1993, T cell development in mice lacking the CD3-ζ/η gene, EMBO J. 12:4347.PubMedGoogle Scholar
  22. 22.
    Ohno, H., Aoe, T., Taki, S., Kitamura, D., Ishida, Y., Rajewsky, K., and Saito, T, 1993, Developmental and functional impairment of T cells in mice lacking CD3ζ chains, EMBO J. 12:4357.PubMedGoogle Scholar
  23. 23.
    Marth, J.D., Peet, R., Krebs, E.G. and Perlmutter, R.M., 1985, A lymphocytespecific protein tyrosine kinase gene is rearranged and overexpressed in the murine T cell lymphoma LSTRA, Cell 43:393.PubMedCrossRefGoogle Scholar
  24. 24.
    Anderson, S.J., Levin, S.D., and Perlmutter, R.M., 1994, Involvement of the protein tyrosine kinase p56lck in T cell signaling and thymocyte development, Adv. Immunol. 56:151.PubMedCrossRefGoogle Scholar
  25. 25.
    Turner, J.M., Brodsky, M.H., Irving, B.A., Levin, S.D., Perlmutter, R.M., and Littman, D.R., 1990, Interaction of the unique N-terminal region of the tyrosine kinase p56lck with the cytoplasmic domains of CD4 and CD8 is mediated by cysteine motifs, Cell 60:755.PubMedCrossRefGoogle Scholar
  26. 26.
    Kim, Y.J., Pollok, K.E., Zhou, Z., Shaw, A., Bolen, J.B., Fraser, M., and Kwon, B.S., 1993, Novel T cell antigen 4-1BB associates with the protein tyrosine kinase P56lck, J. Immunol. 151:1255.PubMedGoogle Scholar
  27. 27.
    Hatakeyama, M., Kono, T., Kobayashi, N., Kawahara, A., Levin, S., Perlmutter, R.M. and Taniguchi, T., 1991, IL-2 receptor interacts with a src-family kinase, p56lck; identification of novel intermolecular association, Science 252:1523.PubMedCrossRefGoogle Scholar
  28. 28.
    Booker, G.W., Gout, I., Downing, A.K., Driscoll, P.C., Boyd, J., Waterfield, M.D., and Campbell, I.D., 1993, Solution structure and ligand-binding site of the SH3 domain of the p85α subunit of phosphatidylinositol 3-kinase, Cell 73:813–822.PubMedCrossRefGoogle Scholar
  29. 29.
    Songyang, Z., Shoelson, S.E., Chadhuri, M., Gish, G., Pawson, T., Haser, W.G., King, F., Roberts, T., Ratnofsky, S., Lechleider, R.J., Neel, B.G., Birge, R.B., Fajardo, J.E., Chou, M.M., Hanafusa, H., Schaffhausen, B., and Cantley, L.C., 1993, SH2 domains recognize specific phosphopeptide sequences, Cell 72:767.PubMedCrossRefGoogle Scholar
  30. 30.
    Xu, H., and Littman, D.R., 1993, A kinase-independent function of lck in potentiating antigen-specific T cell activation, Cell 74:633.PubMedCrossRefGoogle Scholar
  31. 31.
    Straus, D.B., and Weiss, A., 1992, Genetic evidence for the involvement of the lck tyrosine kinase in signal transduction through the T cell antigen receptor, Cell 70: 585.PubMedCrossRefGoogle Scholar
  32. 32.
    Karnitz, L., Sutor, S.L., Torigoe, T., Reed, J.C., Bell, M.P., McKean, D.J., Leibson, P.J., and Abraham, R.T., 1992, Effects of p56lck deficiency on the growth and cytolytic effector function of an interleukin 2-dependent cytotoxic T-cell line, Molec.Cell.Biol. 12:4521.PubMedGoogle Scholar
  33. 33.
    Caron, L., Abraham, N., Pawson, T., and Veillette, A., 1992, Structural requirements for enhancement of T cell responsiveness by the lymphocyte-specific tyrosine protein kinase p56lck, Molec. Cell. Biol. 12:2720.PubMedGoogle Scholar
  34. 34.
    Luo, K. and Sefton, B.M., 1992, Activated lck tyrosine protein kinase stimulates antigen-independent interleukin-2 production in T cells, Molec. Cell. Biol. 12:4724.PubMedGoogle Scholar
  35. 35.
    Perlmutter, R.M., Peet, R., Marth, J.D., Lewis, D.B., Ziegler, S.F., and Wilson, C.B., 1988 Conservation of function in the src gene family: the structure and expression of a human lymphocyte-specific protein tyrosine kinase (lck). J. Cell. Biochemistry 38:117.CrossRefGoogle Scholar
  36. 36.
    Wildin, R.S., Garvin, A.M., Pawar, S., Lewis, D.B., Abraham, K.M., Forbush, K.A., Ziegler, S.F., Allen, J.M., Perlmutter, R.M., 1991, Developmental regulation of lck gene expression in T lymphocytes, J. Exp. Med. 173:383.PubMedCrossRefGoogle Scholar
  37. 37.
    Abraham, K.M., Levin, S.D., Marth, J.D., Forbush, K.A., Perlmutter, R.M., 1991b, Delayed thymocyte development induced by augmented expression of p56lck, J. Exp. Med 173:1421.PubMedCrossRefGoogle Scholar
  38. 38.
    Anderson, S.J., Abraham, K.M., Nakavama T., Singer, A. and Perlmutter, R.M., 1992, Inhibition of T cell receptor p chain gene rearrangement by overexpression of the non-receptor protein tyrosine kinase p56lck, EMBO J. 11: 4877-.PubMedGoogle Scholar
  39. 39.
    Levin, S.D., Anderson, S.J., Forbush, K.A., and Perlmutter, R.M., 1993, A dominant-negative transgene defines a role for p56lck in thymopoiesis, EMBO J. 12: 1671.PubMedGoogle Scholar
  40. 40.
    Molina, T.J., Kishihara, K., Siderovski, D.P., van Ewijk, W., Narendran, A., Timms, E., Wakeham, A., Paige, C.J., Hartmann, K.U., Veillette, A., Davidson, D., and Mak, T.W., 1992, Profound block in thymocyte development in mice lacking p56lck, Nature 357:161.PubMedCrossRefGoogle Scholar
  41. 41.
    Anderson, S.J., Levin, S.D., and Perlmutter, R.M., 1993, Protein tyrosine kinase p56lck controls allelic exclusion of the T cell receptor β chain genes, Nature 365: 552.PubMedCrossRefGoogle Scholar
  42. 42.
    Groetrupp, M., Ungeweiss, K., Azogui, O., Palacios, R., Owen, M.J., Hayday, A.C., and von Boehmer, H., 1993, A novel disulfide-linked heterodimer on pre-T cells consists of the T cell receptor β chain and a 35 kd glycoprotein, Cell 75:283.CrossRefGoogle Scholar
  43. 43.
    Rolink, A., and Melchers, F., 1993, B lymphopoiesis in the mouse, Adv. Immunol. 53:123.PubMedCrossRefGoogle Scholar
  44. 44.
    Marth, J.D., Cooper, J.A., King, C.S., Ziegler, S.F., Tinker, D.A., Overell, R.W., Krebs, E.G. and Perlmutter, R.M., 1988 Neoplastic transformation induced by an activated lymphocyte-specific protein tyrosine kianse (pp56lck), Mol. Cell. Biol. 8: 540.PubMedGoogle Scholar
  45. 45.
    Abraham, K.M., Levin, S.D., Marth, J.D., Forbush, K.A., and Perlmutter, R.M, 1991a, Thymic tumorigenesis induced by overexpression of p56lck, Proc. Natl. Acad. Sci. USA 88:3977-.PubMedCrossRefGoogle Scholar
  46. 46.
    Bolen, J.B., 1993, Nonreceptor protein tyrosine kinases, Oncogene 8:2025.PubMedGoogle Scholar
  47. 47.
    Tsukada, S., Saffran, D.C., Rawlings, D.J., Parolini, O., Allen, R.C., Klisak, I., Sparkes, R.S., Kubagawa, H., Mohandas, T., Quan, S., Belmont, J.W., Cooper, M.D., Conley, M.E., and Witte, O., 1993, Deficient expressionm of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia, Cell 72:279.PubMedCrossRefGoogle Scholar
  48. 48.
    Thomas, J.D., Sidaras, P., Smith, C.I., Vorechovsky, I., Chapman, V., and Paul, W.E., 1993, Co-localization of X-linked agammaglobulinemia and X-linked immunodeficiency genes, Science 261: 355.PubMedCrossRefGoogle Scholar
  49. 49.
    Boyce, B.F., Chen, H., Soriano, P., and Mundy, G.R., 1993, Histomorphometric and immunocytochemical studies of src-related osteopetrosis, Bone 14:335.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Roger M. Perlmutter
    • 1
  • Steven J. Anderson
    • 1
  1. 1.Howard Hughes Medical Institute and the Department of ImmunologyUniversity of WashingtonSeattleUSA

Personalised recommendations