Regulation of Organic Acid Production by Aspergilli

  • C. P. Kubicek
  • C. F. B. Witteveen
  • J. Visser
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 69)

Abstract

Within the fungal kingdom, the accumulation of organic acids in considerable amounts is one of the major domains of aspergilli. These acids may be summarised as falling into two groups, i.e. such derived from sugars by simple oxidation (i.e. gluconic acid, kojic acid) and those, which are related to tricarboxylic acid intermediates (citric, cis-itaconic, malic, oxalic and epoxy-succinic acid). The mechanisms by which aspergilli accumulate these organic acids have attracted the interest of numerous researchers through several decades (for review see Roehr et al., 1983a). The basic metabolic routes involved in the formation of these acids have been established, Figure 1: aspergilli can utilise two different pathways for glucose catabolism, i.e. the hexose-bisphosphate (Embden-Meyerhoff-Parnas) pathway and the hexosemonophosphate (pentose phosphate) shunt. It has been shown that the hexose-bisphosphate pathway prevails under conditions of high acid accumulation. In addition to these pathways, Aspergillus niger and some other species (as well as several other fungi) form a glucose oxidase, which catalyses the formation of glucono-8-lactone from glucose, hence connecting glucose utilisation with gluconate breakdown (Roehr et al., 1983b).

Keywords

Aspergillus Niger Glucose Oxidase Gluconic Acid Itaconic Acid Tricarboxylic Acid Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, S.A., Smith, J.E. and Anderson, J.A. (1972) Mitochondrial activity during citric acid production by Aspergillus niger. Trans. Br. Mycol. Soc. 59, 51–61.CrossRefGoogle Scholar
  2. Bentley, R. and Thiessen, C.P. (1957) Biosynthesis of itaconic acid in Aspergillus terreus. I. Tracer studies with 14C-labelled substrates. J. Biol. Chem. 226, 673–687.PubMedGoogle Scholar
  3. Bercovitz, A., Peleg, Y., Battat, E., Rokem, J.S. and Goldberg, I. (1990) Localisation of pyruvate carboxylase in organic acid producing Aspergillus strains. Appl. Envir. Microbiol. 56, 1594–1597.Google Scholar
  4. Berry, D.R., Chmiel, A. and Al Obaidy, Z. (1977) Citric acid accumulation by Aspergillus niger. In: Genetics and Physiology of Aspergillus (Smith, J.E. and Pateman, J.A., eds.)pp. 405–423. Academic Press, London.Google Scholar
  5. Cleland, W.W. and Johnson, M.J. (1954) Tracer experiments on the mechanism of citric acid formation by Aspergillus niger. J. Biol. Chem. 208, 679–692.PubMedGoogle Scholar
  6. Feir, H.A. and Suzuki, I. (1969) Pyruvate carboxylase from Aspergillus niger. kinetic study of a biotin-containing carboxylase. Can. J. Biochem. 47, 697–710.PubMedGoogle Scholar
  7. Fiedurek, J., Szczodrak, J. and Ilczuk, Z. (1988) Citric acid synthesis by Aspergillus niger mutants resistant to 2-desoxyglucose. Acta Microbiol. Polon. 36, 303–307.Google Scholar
  8. Fiedurek, J., Rogalski, J., Ikczuk, Z. and Leonowicz (1986) Screening and mutagenesis of moulds for the improvement of glucose oxidase production. Enzyme Microb. Technol. 8, 734–736.Google Scholar
  9. Frederick, K.R., Tung, J., Emerick, R.S., Masiarz, F.R., Chamberlain, S.H., Vasavada, A., Rosenberg, S., Chakraborty, S., Schopfer, L.M. and Massey, V. (1990) Glucose oxidase from Aspergillus niger. Cloning, gene sequence, secretion from Saccharomyces cerevisiae and kinetic analysis of a yeast-derived enzyme. J. Biol. Chem. 265, 3793–3802.PubMedGoogle Scholar
  10. Gibson, O.H., Swoboda, B.E.P.and Massey, B. (1985) Kinetics and mechanism of action of glucose oxidase. J. Biol. Chem. 239, 3927–3924.Google Scholar
  11. Habison, A., Kubicek, C.P. and Roehr, M. (1983) Partial purification and regulatory properties of phosphofructokinase from Aspergillus niger. Biochem. J. 209, 669–676.PubMedGoogle Scholar
  12. Harmsen, H.J.M., Kubicek-Pranz, E.M., Roehr, M., Visser, J. and Kubicek, C.P. (1992) Regulation of 6-phosphofructo-2-kinase from the citric acid accumulating fungus Aspergillus niger. Appl. Microbiol. Biotechnol. 37, 784–788.CrossRefGoogle Scholar
  13. Hossain, M., Brooks, J.D. and Maddox, I.S. (1984) The effect of sugar source on citric acid production by Aspergillus niger. Appl. Microbiol. Biotechnol. 19, 383–391.CrossRefGoogle Scholar
  14. Jaklitsch, W.M., Kubicek, C.P. and Scrutton, M.C. (1990) The subcellular localisation of itaconate biosynthesis in Aspergillus terreus. J. Gen. Microbiol. 137, 533–539.Google Scholar
  15. Jaklitsch, W.M., Kubicek, C.P. and Scrutton, M.C. (1991) Intracellular location of enzymes involved in citrate accumulation in Aspergillus niger. Can. J. Microbiol. 37, 823–827.PubMedCrossRefGoogle Scholar
  16. Kelley, R.L. and Reddy, C.A. (1986) Purification and characterisation of glucose oxidase from ligninolytic cultures of Phanerochaete chrysosporium. J. Bacteriol. 166, 269–274.PubMedGoogle Scholar
  17. Kersten, P.J. and Kirk, T.K. (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochate chrysosporium. J. Bacteriol. 169, 2195–2201.PubMedGoogle Scholar
  18. Kersten, P.J. (1990) Glyoxal oxidase of Phanerochaete chrysosporium: its characterisation and activation by lignin peroxidase. Proc. Natl. Acad. Sci. USA. 87, 2937–2940.CrossRefGoogle Scholar
  19. Kim, K.K., Fravel, D.R. and Papavizas, G.C. (1988) Identification of a metabolite produced by Talaromyces flavus as glucose oxidase and its role in the biocontrol of Verticillium dahliae, Phytopathol. 78. 488–492.CrossRefGoogle Scholar
  20. Kitmura, K., Sarangbin, S., Rugsaseel, S. and Usami, S. (1992) Citric acid production by 2-desoxyglucose resistant mutant strains of Aspergillus niger. Appl. Microbiol. Biotechnol. 36, 573–577.Google Scholar
  21. Kriechbaum, M., Heilman, H.J., Wientjes, F.D., Hahn, M., Jany, K.D. and Gassen, H.G. (1989) Cloning and DNA sequence analysis of the glucose oxidase gene from Aspergillus niger NRRL-3. FEBS Letts. 255, 63–66.CrossRefGoogle Scholar
  22. Kubicek, C.P. and Roehr, M. (1986) Citric acid fermentation. CRC Crit Rev. Biotechnol. 3, 331–373.CrossRefGoogle Scholar
  23. Kubicek, C.P. (1988a) Regulatory aspects of the tricarboxylic acid cycle in filamentous fungi — a review. Trans. Br. Mycol. Soc. 90, 339–349.CrossRefGoogle Scholar
  24. Kubicek, C.P. (1988b) The role of the citric acid cycle in fungal organic acid fermentations Biochem. Soc. Symp. 54, 113–126.Google Scholar
  25. Kubicek, C.P. Zehentgruber, O. and Roehr, M. (1979) An indirect method for studying the fine control of citric acid formation by Aspergillus niger. Biotechnol. Letts. 1, 57–62.Google Scholar
  26. Kubicek, C.P., Schreferl-Kunar, G., Wöhrer, W. and Roehr, M. (1988) Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger. Appl. Envir. Microbiol. 54, 633–637.Google Scholar
  27. Kubicek-Pranz, E.M., Mozelt, M., Roehr, M. and Kubicek, C.P. (1990) Changes in the concentration of fructose-2, 6-bisphosphate in Aspergillus niger during stimulation of acidogensis by elevated sucrose concentrations. Biochem. Biophys. Acta 1033, 250–255.PubMedCrossRefGoogle Scholar
  28. Kundu, P.N. and Das, A. (1985) A note on crossing experiments with Aspergillus niger for the production of sodium gluconate. J. Appl. Bacteriol. 59, 1–5.PubMedCrossRefGoogle Scholar
  29. Lenz, H., Wunderwald, P. and Eggerer, H. (1976) Partial purification and some properties of oxalacetase from Aspergillus niger. Eur. J. Biochem. 65, 225–233.PubMedCrossRefGoogle Scholar
  30. Markwell, J., Frakes, L.G., Brott, E.C., Osterman, J. and Wagner, F.W. (1989) Aspergillus niger mutants with increased glucose oxidase production. Appl. Microbiol. Biotechnol. 30, 166–169.CrossRefGoogle Scholar
  31. Mattey, M. (1977) Citrate regulation of citric acid accumulation by Aspergillus niger. FEMS Microbiol. Letts. 2, 71–74.CrossRefGoogle Scholar
  32. Meixner-Monori, B., Kubicek, C.P., Harrer, W., Schreferl-Kunar, G. and Roehr, M. (1986) NADP-specific isocitrate dehydrogenase from the citric acid accumulating fungus Aspergillus niger. Biochem. J. 236, 549–557.PubMedGoogle Scholar
  33. Mischak, H., Kubicek, C.P. and Roehr, M. (1985) Formation and location of glucose oxidase in citric acid producing mycelia of Aspergillus niger. Appl. Microbiol. Biotechnol. 21, 27–31.Google Scholar
  34. Osmani, S.A. and Scrutton, M.C. (1983) The subcellular location of pyruvate carboxylase and some other enzymes in Aspergillus nidulans. Eur. J. Biochem. 133, 551–560.PubMedCrossRefGoogle Scholar
  35. Osmani, S.A. and Scrutton, M.C. (1985) The subcellular localisation of pyruvate carboxylase from Rhizopus arrhizus. Eur. J. Biochem. 147, 119–128.PubMedCrossRefGoogle Scholar
  36. Pazur, J.H. (1966) Glucose oxidase from Aspergillus niger. Meth. Enzymol. 9, 82–86.CrossRefGoogle Scholar
  37. Peleg, Y., Stieglitz, B. and Goldberg, I. (1988) Malic acid accumulation in Aspergillus flavus. I. Biochemical aspects of acid biosynthesis. Appl. Microbiol. Biotechnol. 28, 69–75.CrossRefGoogle Scholar
  38. Peleg, Y., Barak, A., Scrutton, M.C. and Goldberg, I. (1989) Malic acid accumulation by Aspergillus flavus. III. 13CNMR and isoenzyme analysis. Appl. Microbiol. Biotechnol. 30, 176–183.CrossRefGoogle Scholar
  39. Purohit, H.J. and Ratledge, C (1988) Mitochondrial location of pyruvate carboxylase in Aspergillus niger. FEMS Microbiol. Letts. 55, 129–132.CrossRefGoogle Scholar
  40. Ramasamy, K., Kelley, R.L. and Reddy, C.A. (1985) Lack of lignin degradation by glucose oxidase negative mutants of Phanerochaete chrysosporium. Biochem. Biophys. Res. Comm. 131, 436–441.PubMedCrossRefGoogle Scholar
  41. Reuss, M., Fröhlich, S., Kramer, B., Messerschmidt, K. and Pommerening, G. (1986) Coupling of microbial kinetics and oxygen transfer for analysis and optimisation of gluconic acid production by Aspergillus niger. Bioproc. Eng. 1, 79–91.CrossRefGoogle Scholar
  42. Roehr, M. Kubicek, C.P. and Kominek, J. (1983a) Citric acid In: Biotechnology, Vol.3, (Rehm, H.J. and Reed, G., eds.) pp. 331–373. Verlag Chemie Weinheim.Google Scholar
  43. Roehr, M., Kubicek, C.P. and Kominek, J. (1983b) Gluconic acid. In: Biotechnology, Vol. 3, (Rehm H.J. and Reed, G., eds.) pp. 455–465. Verlag Chemie Weinheim.Google Scholar
  44. Smith, J.E. and Ng, W.S. (1972) Fluorometric determination of glycolytic intermediates and adenylates during sequential changes in replacement culture of Aspergillus niger. Can. J. Microbiol. 18, 1657–1664.PubMedCrossRefGoogle Scholar
  45. Steinböck, F., Choojun, S., Held, I., Roehr, M. and Kubicek, C.P. (1993) manuscript in preparation.Google Scholar
  46. Swart, K., van den Vondervoort, P.J.L, Witteveen, C.F.B. and Visser, J. (1990) Genetic localisation of a series of genes affecting glucose oxidase levels in Aspergillus niger. Curr. Genet. 18, 435–439.PubMedCrossRefGoogle Scholar
  47. Van Dijken, J.P. and Veenhuis, M. (1980) Cytochemical localisation of glucose oxidase in peroxisomes of Aspergillus niger. Eur. J. Appl. Microbiol. Biotechnol. 9, 275–283. Verlag chemie WeinheimCrossRefGoogle Scholar
  48. Whittington, H., Kerry-Williams, S., Bidgood, K., Dodsworth, N., Peberdy, J.F., Dobson, M., Hinchliffe, E. and Bailance, D.J. (1990) Expression of the Aspergillus niger glucose oxidase gene in A. niger, A. nidulans and Sachharomyces cerevisiae. Curr. Genet. 18, 531–536.PubMedCrossRefGoogle Scholar
  49. Winskill, N. (1983) Tricarboxylic acid cycle activity in relation to itaconic acid biosynthesis in Aspergillus terreus. J. Gen. Microbiol. 129, 2877–2883.Google Scholar
  50. Witteveen, C.F.B., van den Vondervoort, P., Swart, K. and Visser, J. (1990) Glucose oxidase overproducing and negative mutants of Aspergillus niger. Appl. Microbiol. Biotechnol. 33, 683–686.CrossRefGoogle Scholar
  51. Witteveen, C.F.B., Veenhuis, M. and Visser, J. (1992) Location of glucose oxidase and catalase activities in Aspergillus niger. Appl. Envir. Microbiol. 58, 1190–1194.Google Scholar
  52. Witteveen, C.F.B., van den Vondervoort, P.J.I., van den Broeck, H.C., van Engelenburg, F.A.C., de Graaff, L.H., Hillebrand, M.H.B.C., Schaap, P.J. and Visser, J. (1993) The induction of glucose oxidase, catalase and lactonase in Aspergillus niger. Curr. Genet. in press.Google Scholar
  53. Xu, D.-B., Madrid, C.P., Roehr, M. and Kubicek, C.P. (1989) The influence of type and concentration of the carbon source on production of citric acid by Aspergillus niger. Appl. Microbiol. Biotechnol. 30, 553–558.Google Scholar
  54. Zidwick, M.J. (1992) Organic acids. In “Biotechnology of Filamentous Fungi. Technology and Production” (Zidwick, M.J, eds.) pp. 304–334. Butterworth-Heinemann, Boston.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • C. P. Kubicek
    • 1
  • C. F. B. Witteveen
    • 2
  • J. Visser
    • 1
  1. 1.Abteilung für Mikrobielle Biochemie, Institut für Biochemische Technologie und MikrobiologieTU WienWienAustria
  2. 2.Section Genetics, Department of GeneticsAgricultural UniversityWageningenThe Netherlands

Personalised recommendations