Antiinsectan Effects of Aspergillus Metabolites

  • D. T. Wicklow
  • P. F. Dowd
  • J. B. Gloer
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 69)

Abstract

Species of Aspergillus have been isolated from living, diseased and dead insects. They colonise discrete nutrient-rich substrates for which insects and fungi may compete (e.g. seeds, fruit, dung, etc.). There are numerous examples of antiinsectan effects attributed to Aspergillus, including symptoms of fungal infection (Madelin, 1963; Charnley, 1984; Moore and Erlandson, 1988), observations of insect response to fungal cultures (Loschiavo and Sinha, 1966; Sinha, 1971; Hill, 1978), moulded grain (Sinha, 1966, van Bronswijk and Sinha, 1971, mould contaminated diets (Wicklow and Dowd, 1989), and toxicity studies with specific fungal secondary metabolites (Wright et. al., 1982; Dowd et al.., 1988; Wicklow, 1988; Dowd, 1992). The antiinsectan effects include growth retardation, reduced pupal and adult size, lower fecundity, loss of fertility, mortality, repellency, and genetic changes. In nature, these entomotoxic fermentation products of Aspergillus may prevent loss of substrate to insects and/or discourage arthropod fungivores (Janzen, 1977; Wicklow, 1988). Experiments to test the suitability of Aspergillus species as food for the grain beetle Ahasverus advena revealed that beetle larvae consumed the Aspergillus conidial heads of Eurotium (syn. Aspergillus glaucus) but did not eat the ascomata (Hill, 1978). Eurotium ascomata are covered with a felt of sterile aerial hyphae encrusted with yellow, orange, or red granules which, if toxic or unpalatable, could make such fungal structures less attractive to arthropodes.

Keywords

Kojic Acid Fusaric Acid Aspergillus Parasiticus Dead Insect Aspergillus Ochraceus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnihotri, V.P. (1968) Effect of nitrogenous compounds on Sclerotium formation in Aspergillus niger. Can. J. Microbiol. 14, 1253–1258.PubMedCrossRefGoogle Scholar
  2. Agnihotri, V.P. (1969) Some nutritional and environmental factors affecting growth and production of sclerotia by a strain of Aspergillus niger. Can. J. Microbiol. 15, 835–840.PubMedCrossRefGoogle Scholar
  3. Anas, O. and Reeleder, R.D. (1987) Recovery of fungi and arthropods from Sclerotinia sclerotiorum sclerotia in Quebec muck soils. Phytopathology 77, 327–331.CrossRefGoogle Scholar
  4. Baker, K.F. and Cook, R.J. (1974) Biological Control of Plant Pathogens W. H. Freeman and Co., San Francisco.Google Scholar
  5. Batra, L.R., Batra, S.W.T. and Bohart, G.E. (1973) The mycoflora of domesticated and wild bees (Apoidea). Mycopath. et Mycol. appl. 49, 13–44.CrossRefGoogle Scholar
  6. Becker, G., Frank, H.K. and Lenz, M. (1969) Die Giftwirkung Aspergillus flavus stampnen auf termitenin Bezeihung zu ihrem von Aflatoxin-gehalt. Z. Angew. Zool. 56, 451–464.Google Scholar
  7. Bennett, J.W. (1981) Genetic perspective on polyketides, productivity, parasexuality, protoplasts, and Plasmids, in “Advances in Biotechnology”, Vol. III. Fermentation Products. (Vezina, C. and Singh, K., Eds.), pp. 409–415. Pergamon Press, Toronto.Google Scholar
  8. Bennett, J.W. (1983) Differentiation and secondary metabolism in mycelial fungi, in “Secondary Metabolism and Differentiation in Fungi” (Bennett, J.W. and Ciegler, A. Eds.), pp. 1–32. Marcel Dekker, New York.Google Scholar
  9. Bennett, J.W., Fernholz, F.A. and Lee, L.S. (1978) Effect of light on aflatoxins, anthraquinones, and sclerotia in Aspergillus flavus and A. parasiticus. Mycologia 70, 104–116.PubMedCrossRefGoogle Scholar
  10. Bullock, S., Willetts, H.J. and Ashford, A.E. (1980) The structure and histochemistry of sclerotia of Sclerotinia minor Jagger. I. Light and electron microscope studies on sclerotial development. Protoplasma 104, 315–331.CrossRefGoogle Scholar
  11. Bu’Lock, J. D. (1980) Mycotoxins as secondary metabolites, in “The Biosynthesis of Mycotoxins: A Study in Secondary Metabolism” (Steyn, P.S., Ed.), pp. 1–16. Academic Press, New York.Google Scholar
  12. Charnley, A.K. (1984) Physiological aspects of destructive pathogenesis in insects by fungi: a speculative review, in “Invertebrate-Microbial Interactions” (Anderson, J.W., Rayner, A.D.M., and Walton, D.W., Eds.), pp. 229–270. Cambridge Univ. Press, London.Google Scholar
  13. Christensen, C.M. and Kaufmann, H.H. (1974) Microflora, in “Storage of Cereal Grains and their Products” (Christensen, C.M., Ed.), pp. 158–192. Amer. Assn of Cereal Chemists, St. Paul, Minn.Google Scholar
  14. Christensen, M. and Tuthill, D.E. (1985) Aspergillus: an overview, in “Advances in Penicillium and Aspergillus Systematics” (Samson, R.A. and Pitt, J.I., Eds.), pp. 195–209. Plenum Press, New York.Google Scholar
  15. Ciegler, A. (1972) Bioproduction of ochratoxin A and penicillic acid by members of the Aspergillus ochraceus group. Can. J. Microbiol. 18, 631–636.PubMedCrossRefGoogle Scholar
  16. Clay, K. (1990) Insects, endophytic fungi and plants, in “Pests, Pathogens and Plant Communities” (Burdon, J.J. and Leather, S.R., Eds.), pp. 111–130. Blackwell Scientific Publications, Oxford, U.K.Google Scholar
  17. Cole, R.J. (1981) Fungal tremorgens. J. Food Prot. 44, 715–722.Google Scholar
  18. Cole, R.J. and Cox, R.H. (1981) Handbook of Toxic Fungal Metabolites. Academic Press, New York.Google Scholar
  19. Cole, R.J., Domer, J.W. Springer, J.P., and Cox, R.H. (1981) Indole metabolites from a strain of Aspergillus flavus. J. Agr. Food Chem. 29, 293–295.CrossRefGoogle Scholar
  20. Connell, W.A. (1956) Nitidulidae of Delaware. Univ. Del. Agric. Exper. Sta. Bull. 318.Google Scholar
  21. Cooke, R.C and Rayner, A.D.M. (1984) The Ecology of Saprotrophic Fungi. Butterworths, London.Google Scholar
  22. Cotty, P.J. (1988) Aflatoxin and sclerotial production by Aspergillus flavus: Influence of pH. Phytopathology 78, 1250–1253.CrossRefGoogle Scholar
  23. De Guzman, F.S., Gloer, J.B., Wicklow, D.T. and Dowd, P.F. (1992) New diketopiperazine metabolites from the sclerotia of Aspergillus ochraceus. J. Nat. Prod. 55, 931–939.PubMedCrossRefGoogle Scholar
  24. Diener, U.L., Cole, R.J., Sanders, T.J., Payne, G.A., Lee, L.S. and Klich, M.A. (1987) Epidemiology of aflatoxin formation by Aspergillus flavus. Ann. Rev. Phytopathol. 25, 249–270.CrossRefGoogle Scholar
  25. Domsch, K.H., Gams, W. and Anderson, T.H. (1980) A Compendium of Selected Soil Fungi, Vols. I and II. Academic Press, New York 859 pp.Google Scholar
  26. Dorner, J.W., Cole, R.J., Cox, R.H. and Cunfer, B.M. (1984) Paspalitrem C., a new metabolite from sclerotia of Claviceps paspali. J. Agric. Food Chem. 32, 1069–1071.CrossRefGoogle Scholar
  27. Dorsey, C.K. and Leach, J.G. (1956) The bionomics of certain insects associated with oak wilt, with particular reference to the Nitidulidae. J. Econ. Entomol. 49, 219–230.Google Scholar
  28. Dowd, P.F. (1988a) Synergism of aflatoxin B1 toxicity with the co-occurring fungal metabolite kojic acid to two caterpillars. Entomol. Exper. Appl. 47, 69–71.CrossRefGoogle Scholar
  29. Dowd, P.F. (1988b) Toxicological and biochemical interactions of the fungal metabolites fusaric acid and kojic acid with xenobiotics in Heliothis zea (F.) and Spodoptera frugiperda (J. E. Smith). Pesticide Biochem. Physiol. 32, 123–134.CrossRefGoogle Scholar
  30. Dowd, P.F. (1992) Insect interactions with mycotoxin-producing fungi and their hosts, in “Handbook of Applied Mycology. Vol.5; Mycotoxins in Ecological Systems” (Bhatnagar, D., Lillehoj, E.B. and Arora, D.K., Eds.), pp. 137–155. Marcel Dekker, Inc. New York.Google Scholar
  31. Dowd, P.F. and van Middlesworth, F.L. (1989) In vitro metabolism of the trichothecene 4-monoacetoxyscirpenol by fungus- and non-fungus feeding insects. Experientia 45, 393–395.CrossRefGoogle Scholar
  32. Dowd, P.F., Cole, R.J. and Vesonder, R.V. (1988) Toxicity of selected tremorgenic mycotoxins and related compounds to Spodoptera frugiperda and Heliothis zea. J. Antibiotics 41, 1868–1872.CrossRefGoogle Scholar
  33. Drummond, J. and Pinnock, D.E. (1990) Aflatoxin production by entomopathogenic isolates of Aspergillus parasiticus and Aspergillus flavus. J. Invertebrate Pathology 55, 332–336.CrossRefGoogle Scholar
  34. Evans, H.C (1988) Coevolution of entomogenous fungi and their insect hosts in “Coevolution of Fungi with Plants and Animals” (Pirozynski, K.A. and Hawksworth, D.L., eds.), pp. 149–171. Acad. Press, New York.Google Scholar
  35. Fennell, D.I., Bothast, R.J., Lillehoj, E.B. and Peterson, R.E. (1973) Bright greenish-yellow fluorescence and associated fungi in white corn naturally contaminated with aflatoxin. Cereal Chem. 50, 404–414.Google Scholar
  36. Fenner, M. (1985) Seed Ecology. Chapman and Hall Ltd., London, England. 151 p.CrossRefGoogle Scholar
  37. Floss, H.G. (1976) Biosynthesis of ergot alkaloids and related compounds. Tetrahedron 32, 873–912.CrossRefGoogle Scholar
  38. Frisvad, J.C. (1986) Taxonomic approaches to mycotoxin identification, in “Modern Methods in the Analysis and Structure Elucidation of Mycotoxins” (Cole, R.J., Ed.), pp. 415–457. Academic Press, New York.CrossRefGoogle Scholar
  39. Frisvad, J.C. (1992) Chemometrics and chemotaxonomy: a comparison of multivariate statistical methods for the evaluation of binary fungal secondary metabolite data. Chemometrics and Intelligent Laboratory Systems 14, 253–269.CrossRefGoogle Scholar
  40. Gloer, J.B., TePaske, M.R., Sima, J.R., Wicklow, D.T. and Dowd, P.F. (1988) Antiinsectan aflavinine derivatives from the sclerotia of Aspergillus flavus. J. Org. Chem. 53, 5457–5460.CrossRefGoogle Scholar
  41. Gloer, J.B., Rinderknecht, B.L., Wicklow, D.T. and Dowd, P.F. (1989) Nominine: A new insecticidal indole diterpene from the sclerotia of Aspergillus nomius. J. Org. Chem. 54, 2530–2532.CrossRefGoogle Scholar
  42. Griffin, D.M. (1966) Fungi attacking seeds in dry seed-beds. Proc. Linnean Soc. N.S.W. 91, 84–89.Google Scholar
  43. Hernandez, M.R.T., Raimbault, M.S. and Lonsane, B.K. (1992) Potential of solid state fermentation for production of ergot alkaloids. Let. Appl. Micro. 15, 156–159.CrossRefGoogle Scholar
  44. Hesseltine, C.W., Sorenson, W.G. and Smith, M. (1970) Taxonomic studies of the aflatoxin-producing strains in the Aspergillus flavus group. Mycologia 62, 123–132.PubMedCrossRefGoogle Scholar
  45. Hill, S.T. (1978) Development of Ahasverus advena (Coleoptera: Silvanidae) on seven species of Aspergillus and on food moulded by two of these. J. Stored Prod. Res. 14, 227–231.CrossRefGoogle Scholar
  46. Hinton, H.E. (1945) Carpophilus hemipterus (Linnaeus), in “A Monograph of the Beetles Associated with Stored Products”, pp. 87–95. Jarrold and Sons, Norwich, England.Google Scholar
  47. Ingham, R.E. (1992) Interactions between invertebrates and fungi: Effects on nutrient availability, in “The Fungal Community”, Second Edition, (Carroll, G.C. and Wicklow, D.R., Eds.), pp. 669–690. Marcel Dekker, New York.Google Scholar
  48. Janzen, D.H. (1977) Why fruits rot, seeds mould, and meat spoils. Amer. Nat. 11, 691–713.CrossRefGoogle Scholar
  49. Jarvis, J.L., Guthrie, W.D. and Lillehoj, E.B. (1984) Aflatoxin and selected biosynthetic precursors: effects on the European corn borer in the laboratory. J. Agric. Entomol. 1, 354–359.Google Scholar
  50. Jong, S.C. and Ganth, M.J. (1984) ATCC Catalog of Fungi/Yeasts. 16th edition, American Type Culture Collection, Rockville, MD.Google Scholar
  51. Kevan, D.K. (1965) The soil fauna: its nature and biology, in “Ecology of soil-borne plant pathogens” (Baker, K.F. and Snyder, W.C., Eds.), pp. 3–50. University of California Press, Berkeley.Google Scholar
  52. Kogan, M., Helm, C.G., Kogan, J. and Brewer, E. (1989) Distribution and economic importance of Heliothis virescens and Heliothis zea in North Central, and South America and their natural enemies and host plants in “ Proceedings of the Workshop in Biological Control of Heliothis: Increasing the Effectiveness of Natural Enemies”. New Delhi, India, November 11–15, 1985, pp. 241–297. Office of International Cooperation and Development, USDA.Google Scholar
  53. Kurtzman, C.P., Smiley, M.J., Robnett, C.J. and Wicklow, D.T. (1986) DNA relatedness among wild and domesticated species in the Aspergillus flavus group. Mycologia 78, 955–959.CrossRefGoogle Scholar
  54. Laakso, J.A. (1992) Ph. D. Dissertation: New biologically active metabolites from aquatic and sclerotium-producing fungi. Department of Chemistry, University of Iowa, Iowa City, IA.Google Scholar
  55. Laakso, J.A., Gloer, J.B., Wicklow, D.T. and Dowd, P.F. (1992a) Radarins A-D: New antiinsectan indole diterpenes from the sclerotia of Aspergillus sulphureus. J. Org. Chem. 57, 138–141.CrossRefGoogle Scholar
  56. Laakso, J.A., Gloer, J.B., Wicklow, D.T. and Dowd, P.F. (1992b) Sulpinines A-C and secopenitrem B: New antiinsectan metabolites from the sclerotia of Aspergillus sulphureus. J. Org. Chem. 57, 2066–2071.CrossRefGoogle Scholar
  57. Laakso, J.A., Gloer, J.B., Wicklow, D.T. and Down, P.F. (1993) A new penitrem analog with antiinsectan activity from the sclerotia of Aspergillus sulphureus. J. Ag. Food Chem. 41, 973–975.CrossRefGoogle Scholar
  58. Leeper, J.R., Roush, R.T. and Reynolds, H.T. (1986) Preventing or managing resistance in arthropods in “Pesticide Resistance: Strategies and Tactics for Management” (Committee on strategies for the management of pesticide-resistant pest populations, Eds) pp. 335–346. National Academy Press, Washington, D.C.Google Scholar
  59. Loschiavo, S.R. and Sinha, R.N. (1966) Feeding, oviposition, aggregation by the rusty grain beetle Cryptolestes ferrugineus (Coleoptera: Cucujidae) on seed-borne fungi. Ann. Ent. Soc. Amer. 59, 578–585.Google Scholar
  60. Lussenhop, J. and Wicklow, D.T. (1990) Nitidulid beetles as a source of Aspergillus flavus infective inoculum. Transactions of the Japanese Mycological Society 31, 63–74.Google Scholar
  61. Luttrell, E.S. (1981) Tissue replacement diseases caused by fungi. Annu. Rev. Phytopath. 19, 373–389.CrossRefGoogle Scholar
  62. Madelin, M.F. (1963) Diseases caused by hyphomycetous fungi, in “Insect Pathology: An Advanced Treatise” Vol. 2, (Steinhaus, E.A., Ed.), pp. 233–271. Academic Press, New York.CrossRefGoogle Scholar
  63. Malloch, D.M. (1985) The Trichocomaceae: Relationships with other Ascomycetes, in “Advances in Penicillium and Aspergillus Systematics” (Samson, R.A. and Pitt, J.I., Eds.), pp. 365–382. Plenum Press, New York.Google Scholar
  64. Malloch, D. M. and R. F. Cain. (1972). The Trichomataceae: Ascomycetes with Aspergillus, Paecilomyces, and Penicillium imperfect states. Can. J. Bot. 50: 2613–2628.CrossRefGoogle Scholar
  65. Manabe, M. and Tsuruta, O. (1978). Geographical distribution of aflatoxin-producing fungi inhabiting in southeast Asia. Jap. Agric. Res. Quarterly 12: 224–227.Google Scholar
  66. Mantle, P. G. (1978). Industrial exploitation of ergot fungi, in “The Filamentous Fungi, Vol. I. Industrial Mycology” (Smith, J.E. and Berry, D.R., Eds.), pp. 281–300. John Wiley and Sons, New York.Google Scholar
  67. Mantle, P. G. Perera, K. P. W. C., Maishman, N. J. and Mundy, G. R. (1983). Biosynthesis of penitrems and roquefortine by Penicillium crustosum. Appl. Environ. Microbiol. 45:1486–1490.PubMedGoogle Scholar
  68. Martin, M. M. (1987). Invertebrate-Microbial Interactions. Cornell University Press, Ithaca, NY.Google Scholar
  69. May, J. B. (1987). Wet milling: Process and products, pp. 377–397. In: Corn: Chemistry and Technology. S. A. Watson and P. E. Ramstad (Eds.), Am. Assoc. Cereal Chem., St. Paul, MN.Google Scholar
  70. Meinke, P. T., O’Connor, S. P., Mrozik, H. and Fisher, M. H. (1992). Synthesis of ring contracted, 25-nor-6, 5-spiroketal-modified avermectin derivatives. Tetrahedron Lett. 33: 1203–1206.Google Scholar
  71. Miller, M. W. and E. M. Mrak. (1954). Yeasts associated with dried fruit beetles in figs. Appl. Environ. Microbiol. 1: 174–178.Google Scholar
  72. Mills, J. T. (1983). Insect-fungus associations influencing seed deterioration. Phytopathology 73; 330–335.CrossRefGoogle Scholar
  73. Moore, K. C. and Erlandson, M. A. (1988). Isolation of Aspergillus parasiticus Speare and Beauveria bassiana (Bals.) Vuill. from melanopline grasshoppers (Orthoptera: Acrididae) and demonstration of their pathogenicity in Melanoplus sanguinipes (Fabricius). Can. Entomol. 120: 989–991.CrossRefGoogle Scholar
  74. Moss, M. O. (1989). Mycotoxins of Aspergillus and other filamentous fungi. Sym. Ser. Soc. Appl. Bacteriol. Oxford: Blackwell Scientific Publications 18: 695–815.Google Scholar
  75. Murakoshi, S., Ohtomo T., and Kurata, J. (1973). Toxic effects of various mycotoxins to silkworm (Bombyx mori L.) larvae in ad libitum feeding test. J. Food Hyg. Soc. Japan 14:65–68.CrossRefGoogle Scholar
  76. Nilsson, M., Hansson, E. and Ronnback, L. (1989). Uptake of sodium valproate and effects on GABA transport in astroglial primary cultures. Atl. Lab. Anim. A.T.L.A. 16: 244–247.Google Scholar
  77. Ohtomo, T., Murakoshi, S., Sugiyama, J. and Kurata, H. (1975) Detection of aflatoxin B1 in silkworm larvae attacked by an Aspergillus flavus isolate from a sericultural farm. Appl. Microbiol. 30, 1034–1035.PubMedGoogle Scholar
  78. Paster, N. and Chet, I. (1980) Effect of environmental factors on growth and Sclerotium formation in Aspergillus ochraceus. Can. J. Bot. 58, 1844–1850.CrossRefGoogle Scholar
  79. Paster, N. and Chet, I. (1982) Influence of controlled atmospheres on formation and ultrastructure of Aspergillus ochraceus sclerotia. Trans. Br. Mycol. Soc. 78, 315–322.CrossRefGoogle Scholar
  80. Rai, J.N., Tewari, J.P. and Sinha, A.K. (1967) Effect of environmental conditions on sclerotia and cleistothecia production in Aspergillus. Mycopathol. Mycol. Appl. 31, 209–224.PubMedCrossRefGoogle Scholar
  81. Raper, K.B. and Fennell, D.I. (1965) The Genus Aspergillus. Williams and Wilkins, Baltimore. 686 pp.Google Scholar
  82. Rhoades, D.F. and Cates, R.G. (1976) A general theory of plant antiherbivore chemistry, in “Biochemical Interaction between Plants and Insects” Wallace, J.W. and Mansell, R.L., Eds.), pp. 168–213. Plenum Press, New York.CrossRefGoogle Scholar
  83. Robinson, T. (1979) The evolutionary ecology of alkaloids, in “Herbivores: Their Interaction with Secondary Plant Metabolites” Rosenthal, G.A. and Janzen, D.H., Eds.), pp. 413–448. Academic Press, New York.Google Scholar
  84. Rudolph, E.D. (1962) The effect of some physiological and environmental factors in sclerotial aspergilli. Amer. J. Bot. 49, 71–78.CrossRefGoogle Scholar
  85. Samson, R.A. and K.A. Scifert (1985) The ascomycete genus Penicilliopsis and its anamorphs, in “Advances in Penicillium and Aspergillus Systematics” (Samson, R.A. and Pitt, J.I., Eds.), pp. 397–428. Plenum Press, New York.Google Scholar
  86. Semeniuk, G., Harshfield, G.S., Carlson, C.W., Hesseltine, C.W. and Kwolek, W.F. (1971) Mycotoxins in Aspergillus. Mycopathol. Mycol. Appl. 43, 137–152.PubMedCrossRefGoogle Scholar
  87. Sewell, G.W.F. (1959) Studies of fungi in a Calluna-heathland soil. II. Perfect states of some Penicillia. Antonie van Leeuwenhoek 33, 297–314.Google Scholar
  88. Sharada, K., Ikrhsmi, H. and Hyakumachi, M. (1992) 2, 4-D induced, c-AMP mediated, sclerotial formation in Rhizoctonia solani. Mycol. Res. 96, 863–866.CrossRefGoogle Scholar
  89. Singh, K., Frisvad, J.C., Thrane, U. and Mathur, S.B. (1991) An Illustrated Manual on Identification of some Seed-borne Aspergilli, Fusaria, Penicillia and their Mycotoxins. Danish Govt. Inst. of Seed Pathology for Developing Countries, Hellerup, Denmark. 133 pp.Google Scholar
  90. Sinha, R.N. (1966) Association of granary mites and seed-borne fungi in stored grain in outdoor and indoor habitats. Ann. Entomol. Soc. Am. 59, 1170–1181.Google Scholar
  91. Sinha, R.N. (1971) Fungus as food for some stored-product insects. J. Econ. Entomol. 64, 3–6.Google Scholar
  92. Sinha, R.N. (1992) The fungal community in the stored grain ecosystem, in “The Fungal Community”, Second Edition, (Carroll, G.C. and Wicklow, D.T., Eds.), pp. 797–815. Marcel Dekker, Inc., New York.Google Scholar
  93. Smart, M.G., Wicklow, D.T. and Caldwell, R.W. (1990) Pathogenesis in Aspergillus ear rot of maize: light microscopy of fungal spread from wounds. Phytopathology 80, 1287–1294.CrossRefGoogle Scholar
  94. Smith, J.E. and Moss, M.O. (1985) Mycotoxins: formation, analyses, and significance. John Wiley, Chichester.Google Scholar
  95. Southwood, T.R.E. (1973) The insect/plant relationship — an evolutionary perspective, in Insect/Plant Relationships (van Emden, H.F., Ed.), pp. 3–29. Wiley, New York.Google Scholar
  96. Stadler, P.A. and Giger, R.K.A. (1984) Ergot alkaloids and their derivatives in medicinal chemistry and therapy, in “Natural Products and Drug Development” proceedings of the 20th Alfred Benzon Symposium (Krogsgaard-Larsen, P., Christensen, S.P. and Kofod, H., Eds.), pp. 463–485. Munksgaard, Copenhagen.Google Scholar
  97. States, J. and Christensen, M. (1966) Aspergillus leporis, a new species related to A.flavus. Mycologia 58, 738–742.CrossRefGoogle Scholar
  98. Staub, G.M., Gloer, J.B., Wicklow, D.T. and Dowd, P.F. (1992) Aspernomine: a cytotoxic antiinsectan metabolite with a novel ring system from the sclerotia of Aspergillus nomius. J. Amer. Chem. Soc. 114, 1015–1017.CrossRefGoogle Scholar
  99. Staub, G.M., Gloer, K.B., Gloer, J.B., Wicklow, D.T. and Dowd, P.F. (1993) New paspalinine derivatives with antiinsectan activity from the sclerotia of Aspergillus nomius. Tetrahedron Lett. 34, 2569–2572.CrossRefGoogle Scholar
  100. Steiner, W.F. (1984) A review of the biology of Phalacrid beetles, in “Fungus-Insect Relationships” (Wheeler, Q. and Blackwell, M., Eds.), pp. 424–445. Columbia Univ. Press, New York.Google Scholar
  101. Swain, T. (1979) Tannins and lignins, in “Herbivores: their Interaction with secondary plant metabolites” (Rosenthal, G.A. and Janzen, D.H., Eds.), pp. 657–700. Acad. Press, New York.Google Scholar
  102. TePaske, M.R. (1991) Ph.D. Dissertation: Isolation and structure determination of antiinsectan metabolites from the sclerotia of Aspergillus species. Department of Chemistry, University of Iowa, Iowa City, IA, 194 p.Google Scholar
  103. TePaske, M.R., Gloer, J.B., Wicklow, D.T.and Dowd, P.F. (1989a) Tubingensin A: An antiviral carbazole alkaloid from the sclerotia of Aspergillus tubingensis. J. Org. Chem. 54, 4743–4746.CrossRefGoogle Scholar
  104. TePaske, M.R., Gloer, J.B., Wicklow, D.T. and Dowd, P.F. (1989) The structure of tubingensin B: A cytotoxic carbazole alkaloid from the sclerotia of Aspergillus tubingensis. Tetrahedron Lett. 30, 5965–5968.CrossRefGoogle Scholar
  105. TePaske, M.R., Gloer, J.B., Wicklow, D.T. and Dowd, P.F. (1989c) Three new aflavinine derivatives from the sclerotia of Aspergillus tubingensis. Tetrahedron 45, 4961–4968.CrossRefGoogle Scholar
  106. TePaske, M.R., Gloer, J.B., Wicklow, D.T. and Dowd, P.F. (1990) Aflavazole: A new antiinsectan carbazole metabolite from the sclerotia of Aspergillus flavus. J. Org. Chem. 55, 5299–5301.CrossRefGoogle Scholar
  107. TePaske, M.R., Gloer, J.B., Wicklow, D.T. and Dowd, P.F. (1991) Leporin A: An antiinsectan N-alkoxypyridone from the sclerotia of Aspergillus leporis. Tetrahedron Lett. 41, 5687–5690.CrossRefGoogle Scholar
  108. TePaske, M.R., Gloer, J.B., Wicklow, D.T. and Down, P.F. (1992) Aflavarin and beta aflatrem: New antiinsectan metabolites from the sclerotia of Aspergillus flavus. J. Nat. Prod. 55, 1080–1086.CrossRefGoogle Scholar
  109. Townsend, B.B. (1957) Nutritional factors influencing the production of sclerotia by certain fungi. Annals of Botany, N.S. 21, 153–166.Google Scholar
  110. Tsuruta, O., Gohara, S. and Saito, M. (1981) Scanning electron microscopic observations of a fungal invasion of corn kernels. Trans. Mycol.. Soc., Japan 22, 121–126.Google Scholar
  111. Turner, W.B. and Aldridge, D.C. (1983) Fungal Metabolites II. Academic Press, New York. 631 pp.Google Scholar
  112. van Bronswijk, J.E.M.H. and Sinha, R.N. (1971) Interrelations among physical, biological and chemical variates in stored-grain ecosystems: a descriptive and multivariate study. Ann. Ent. Soc. Amer. 64, 789–803.Google Scholar
  113. Waked, M.Y. and Nouman, K.A. (1982) The relationship of sclerotia formation to aflatoxin content of cottonseeds infected with Aspergillus flavus Link. Med. Fac. Landbouww. Rijksuniv. Gent, 47, 201–209.Google Scholar
  114. Whittaker, R.H. and Feeney, P. (1971) Allelochemics: chemical interactions between species. Science 171, 757–770.PubMedCrossRefGoogle Scholar
  115. Wicklow, D.T. (1984) Adaptation in wild and domesticated yellow-green Aspergilli, in “Toxigenic Fungitheir Toxins and Health Hazard” (Kurata, H. and Ueno, Y., Eds), pp. 78–86. Elsevier, Amsterdam.Google Scholar
  116. Wicklow, D.T. (1985) Aspergillus leporis sclerotia form on rabbit dung. Mycologia 77, 531–534.CrossRefGoogle Scholar
  117. Wicklow, D.T. (1988) Metabolites in the convolution of fungal chemical defence systems, in “Convolution of Fungi with Animals and Plants” (Pirozynski, K.A. and Hawksworth, D., Eds.), pp. 173–201. Academic Press, London.Google Scholar
  118. Wicklow, D.T. (1991) Epidemiology of Aspergillus flavus in corn, in “Aflatoxin in Corn: New Perspectives” (Shotwell, O.L. and Hurburgh, C.R., Jr., Eds.), pp. 315–328. Iowa Agriculture and Home Economics Experiment Station Research Bulletin 599, Ames, Iowa.Google Scholar
  119. Wicklow, D.T. (1992). Interference Competition, in “The Fungal Community — Its Organisation and Role in the Ecosystem” Second Edition (Carroll, G.C. and Wicklow, D.T., Eds.), pp. 265–274. Marcel Dekker, New York, Basel and Hong Kong.Google Scholar
  120. Wicklow, D.T. and Cole, R.J. (1982) Tremorgenic indole metabolites and aflatoxins in sclerotia of Aspergillus flavus: An evolutionary perspective. Can. J. Bot. 60, 525–528.CrossRefGoogle Scholar
  121. Wicklow, D.T. and Dowd, P.F. (1989) Entomotoxigenic potential of wild and domesticated yellow-green aspergilli, toxicity to corn earworm and fall armyworm larvae. Mycologia 81, 561–566.CrossRefGoogle Scholar
  122. Wicklow, D.T. and Horn, B.W. (1984) Aspergillus flavus sclerotia form in wound inoculated corn. Mycologia 76 (3), 503–505.CrossRefGoogle Scholar
  123. Wicklow, D.T., Horn, B.W. and Cole, R.J. (1982) Sclerotium production by Aspergillus flavus on corn kernels. Mycologia 74, 398–403.CrossRefGoogle Scholar
  124. Wicklow, D.T., Dowd, P.F., Tepaske, M.R. and Gloer, J.B. (1988) Sclerotial metabolites of Aspergillus flavus toxic to a detritivorous maize insect (Carpophilus hemipterus, Nitidulidae). Trans. Br. Mycol. Soc. 91, 433–438.CrossRefGoogle Scholar
  125. Wicklow, D.T. and Shotwell, O.L. (1983) Intrafungal distribution of aflatoxins among conidia and sclerotia of Aspergillus flavus and Aspergillus parasiticus. Can. J. Microbiol. 29, 1–5.PubMedCrossRefGoogle Scholar
  126. Wicklow, D.T. and Wilson, D.M. (1986) Germination of Aspergillus flavus sclerotia in a Georgia maize field. Trans. Br. Mycol. Soc. 87, 651–653.CrossRefGoogle Scholar
  127. Wicklow, D.T., Horn, B.W., Burg, W.R. and Cole, R.J. (1984) Sclerotium dispersal of Aspergillus flavus and Eupenicillium ochrosalmoneum from corn during harvest. Trans. Br. Mycol. Soc. 83 (2), 299–303.CrossRefGoogle Scholar
  128. Willetts, H.J. (1972) The morphogenesis and possible evolutionary origins of fungal sclerotia. Biol. Rev. 47, 515–536.CrossRefGoogle Scholar
  129. Wilson, B. J. (1971) Miscellaneous Aspergillus toxins, in “Microbial toxins. VI. Fungal Toxins” (Ciegler, A., Kadis, S. and Ajl, S.J., Eds.), pp. 207–295. Academic Press, New York.Google Scholar
  130. Wilson, B.J. and Wilson, C.H. (1964) Toxin from Aspergillus flavus: production on food materials of a substance causing tremors in mice. Science 144, 177–178.PubMedCrossRefGoogle Scholar
  131. Wright, V.F., Harein, P.K. and Collins, N.A. (1980) Preference of the confused flour beetle for certain Penicillium isolates. Environ. Entomol. 9, 213–216.Google Scholar
  132. Wright, V.F., Vesonder, R.F. and Ciegler, A. (1982) Mycotoxins and other fungal metabolites as insecticides, “Microbial and Viral Pesticides” (Kurstak, E., Ed.), pp. 559–583. Marcel Dekker, New York.Google Scholar
  133. Yokota, T., Sakurai, A., Iriuchijima, S. and Takahashi, N. (1981) Isolation and 13 C NMR study of cyclopiazonic acid, a toxic alkaloid produced by muscardine fungi Aspergillus flavus and A. oryzae. Agric. Biol. Chem. 45, 53–56.CrossRefGoogle Scholar
  134. Zummo, N. and Scott, G.E. (1990). Relative aggressiveness of Aspergillus flavus and A. parasiticus on maize in Mississippi. Plant Disease 74, 978–981.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • D. T. Wicklow
    • 1
  • P. F. Dowd
    • 1
  • J. B. Gloer
    • 2
  1. 1.National Center for Agricultural Utilization Research, Agricultural Research ServiceU.S.D.A.PeoriaUSA
  2. 2.Department of ChemistryUniversity of IowaIowa CityUSA

Personalised recommendations