Skip to main content

Interactions of Fungi with Toxic Metals

  • Chapter
The Genus Aspergillus

Part of the book series: Federation of European Microbiological Societies Symposium Series ((FEMS,volume 69))

Abstract

Interactions of toxic metals with fungi have long been of importance since metal toxicity still is the basis of many fungicidal preparations while in an environmental context, accelerating pollution of the natural environment has led to increased interest because of the sometimes dominant presence of fungi in metal-polluted habitats, the translocation of toxic metals and radionuclides to fruit bodies of edible higher fungi, and the significance of mycorrhizal fungi in the amelioration of metal phytotoxicity (Colpaert and Van Assche, 1987). Furthermore, the use of fungal (and other microbial) biomass for the detoxification of metal/radionuclide-containing industrial effluents is of biotechnological potential (Gadd, 1990, 1992a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adjimani, J.P. and Emery, T. (1987) Iron uptake in Mycelia Sterilia EP-76. J. Bacterid. 169, 3664–3668.

    CAS  Google Scholar 

  • Arnebrant, K., Bååth, E. and Nordgren, A. (1987) Copper tolerance of microfungi isolated from polluted and unpolluted forest soil. Mycologia 79, 890–895.

    Article  CAS  Google Scholar 

  • Avery, S.V. and Tobin, J. (1992) Mechanisms of strontium uptake by laboratory and brewing strains of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 58, 3883–3889.

    CAS  PubMed  Google Scholar 

  • Anraku, Y., Umemoto, N., Hirata, R. and Wada, Y. (1989) Structure and function of the yeast vacuolar membrane proton ATPase. J. Bioenergetics Biomembr. 21, 589–603.

    Article  CAS  Google Scholar 

  • Babich, H. and Stotzky, G. (1980) Environmental factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms. CRC Crit. Rev. Microbiol. 8, 99–145.

    Article  CAS  Google Scholar 

  • Babich, H. and Stotzky, G. (1985) Heavy metal toxicity to microbe-mediated ecologic processes: a review and potential application to regulatory policies. Environ. Res. 36, 111–137.

    Article  CAS  PubMed  Google Scholar 

  • Bewley, R.J.F. (1980) Effects of heavy metal pollution on oak leaf microorganisms. Appl. Environ. Microbiol. 40, 1053–1059.

    CAS  PubMed  Google Scholar 

  • Bewley, R.J.F. and Campbell, R. (1980) Influence of zinc, lead and cadmium pollutants on microflora of hawthorn leaves. Microbial Ecol. 6, 227–240.

    Article  CAS  Google Scholar 

  • Bianchi, M.E., Carbone, M.L. and Lucchini, G. (1981) Mn2+ and Mg2+ uptake in Mn-sensitive and Mn-resistant yeast strains. Plant Sci. Lett. 22, 345–352.

    Article  CAS  Google Scholar 

  • Borst-Pauwels, G.W.F.H. (1981) Ion transport in yeast. Biochim. Biophys. Acta 650, 88–127.

    Article  CAS  PubMed  Google Scholar 

  • Bradley, R., Burt, A.J. and Read, D.J. (1982) The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol. 91, 197–209.

    Article  CAS  Google Scholar 

  • Butt, T.R. and Ecker, D.J. (1987) Yeast metallothionein and applications in biotechnology. Microbiol. Rev. 51, 351–364.

    CAS  PubMed  Google Scholar 

  • Campbell, R. and Martin, M.H. (1990) Continuous flow fermentation to purify waste water by the removal of cadmium. Wat. Air Soil Poll. 50, 397–408.

    Article  CAS  Google Scholar 

  • Collins, Y.E. and Stotzky, G. (1989) Factors affecting the toxicity of heavy metals to microbes, in “Metal Ions and Bacteria” (Beveridge, T.J. and Doyle, R.J., Eds), pp. 31–90. Wiley, New York.

    Google Scholar 

  • Collins, Y.E. and Stotzky, G. (1992) Heavy metals alter the electrokinetic properties of bacteria, yeasts and clay minerals. Appl. Environ. Microbiol. 58, 1592–1600.

    CAS  PubMed  Google Scholar 

  • Colpaert, J.V. and Van Assche, J.A. (1987) Heavy metal tolerance in some ectomycorrhizal fungi. Functional Ecol. 1, 415–421.

    Article  Google Scholar 

  • Cooney, J.J. and Wuertz, S. (1989) Toxic effects of tin compounds on microorganisms. J. Ind. Microbiol. 4, 375–402.

    Article  CAS  Google Scholar 

  • Corfield, P.S. and Smith, D.G. (1970) The endoplasmic reticulum as the site of potassium tellurite reduction in yeasts. J. Gen. Microbiol. 63, 311–316.

    Article  CAS  Google Scholar 

  • De Rome, L. and Gadd, G.M. (1987) Copper adsorption by Rhizopus arrhizus, Cladosporium resinae and Penicillium ium. Appl. Microbiol. Biotechnol. 26, 84–90.

    Article  Google Scholar 

  • De Rome, L. and Gadd, G.M. (1991) Use of pelleted and immobilized yeast and fungal biomass for heavy metal and radionuclide recovery. J. Ind. Microbiol. 7, 97–104.

    Article  Google Scholar 

  • Dixon, R.K. (1988) Response of ectomycorrhizal Quercus rubra to soil cadmium, nickel and lead. Soil Biol. Biochem. 20, 555–559.

    CAS  Google Scholar 

  • Duxbury, T. (1985) Ecological aspects of heavy metal responses in microorganisms, in “Advances in Microbial Ecology” (Marshall, K.C., Ed.), pp. 185–235. Plenum Press, New York.

    Chapter  Google Scholar 

  • Fogel, S., Welch, J.W. and Maloney, D.H. (1988) The molecular genetics of copper resistance in Saccharomyces cerevisiae a paradigm for non-conventional yeasts. J. Basic Microbiol. 28, 147–160.

    Article  CAS  PubMed  Google Scholar 

  • Franz, A., Burgstaller, W. and Schinner, F. (1991) Leaching with Penicillium simplicissimum: influence of metals and buffers on proton extrusion and citric acid production. Appl. Environ. Microbiol. 57, 769–774.

    CAS  PubMed  Google Scholar 

  • Freedman, B. and Hutchison, T.C. (1980) Effects of smelter pollutants on forest leaf litter decomposition near a nickel-copper smelter at Sudbury, Ontario. Can. J. Bot. 58, 1722–1736.

    Article  CAS  Google Scholar 

  • Gadd, G.M. (1984) Effect of copper on Aureobasidium pullulans in solid medium: adaptation not necessary for tolerant behaviour. Trans. Brit. Mycol. Soc. 82, 546–549.

    Article  CAS  Google Scholar 

  • Gadd, G.M. (1986) The responses of fungi towards heavy metals, in “Microbes in Extreme Environments” (Herbert, R.A. and Codd, G.A., Eds.), pp. 83–110. Academic Press, London.

    Google Scholar 

  • Gadd, G.M. (1988) Accumulation of metals by microorganisms and algae, in “Biotechnology A Comprehensive Treatise, Volume 6b, Special Microbial Processes” (Rehm, H-J, Ed.), pp. 401–433. VCH Verlagsgesellschaft, Weinheim.

    Google Scholar 

  • Gadd, G.M. (1990) Fungi and yeasts for metal binding, in:“Microbial Mineral Recovery” (Ehrlich, H. and Brierley, C.L., Eds.), pp. 249–275. McGraw-Hill, New York.

    Google Scholar 

  • Gadd, G.M. (1992a) Microbial control of heavy metal pollution, in “Microbial Control of Environmental Pollution” (Fry, J.C., Gadd, G.M., Herbert, R.A., Jones, C.W. and Watson-Craik, I., Eds.), pp. 59–88. Cambridge University Press, Cambridge.

    Google Scholar 

  • Gadd, G.M. (1992b) Metals and microorganisms: a problem of definition. FEMS Microbiol. Lett. 100, 197–204.

    CAS  Google Scholar 

  • Gadd, G.M. (1992c) Molecular biology and biotechnology of microbial interactions with organic and inorganic heavy metal compounds, in:“Molecular Biology and Biotechnology of Extremophiles” (Herbert, R.A. and Sharp, R.J., Eds.), pp. 225–257. Blackie and Sons, Glasgow.

    Chapter  Google Scholar 

  • Gadd, G.M. (1993) Interactions of fungi with toxic metals. New Phytol. 124, 1–35.

    Article  Google Scholar 

  • Gadd, G.M. and Griffiths, A.J. (1978) Microorganisms and heavy metal toxicity. Microbial Ecol. 4, 303–317.

    Article  CAS  Google Scholar 

  • Gadd, G.M. and De Rome, L. (1988) Biosorption of copper by fungal melanin. Appl. Microbiol. Biotechnol. 29, 610–617.

    Article  CAS  Google Scholar 

  • Gadd, G.M. and White, C. (1985) Copper uptake by Penicillium ochro-chloron: influence of pH on toxicity and demonstration of energy-dependent copper influx using protoplasts. J. Gen. Microbiol. 131, 1875–1879.

    CAS  Google Scholar 

  • Gadd, G.M. and White, C. (1989a) Heavy metal and radionuclide accumulation and toxicity in fungi and yeasts, in:“Metal-Microbe Interactions” (Poole, R.K. and Gadd, G.M., Eds.), pp. 19–38. IRL Press, Oxford.

    Google Scholar 

  • Gadd, G.M. and White, C. (1989b) The removal of thorium from simulated acid process streams by fungal biomass. Biotechnol. Bioeng. 33, 592–597.

    Article  CAS  PubMed  Google Scholar 

  • Gadd, G.M. and White, C. (1992) Removal of thorium from simulated acid process streams by fungal biomass: potential for thorium desorption and reuse of biomass and desorbent. J. Chem. Technol. Biotechnol. 55, 39–44.

    Article  CAS  Google Scholar 

  • Gadd, G.M., Stewart, A., White, C. and Mowll, J.L. (1984) Copper uptake by whole cells and protoplasts of a wild-type and copper-resistant strain of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 24, 231–234.

    Article  CAS  Google Scholar 

  • Gadd, G.M., White, C. and Mowll, J.L. (1987) Heavy metal uptake by intact cells and protoplasts of Aureobasidium pullulans. FEMS Microbiol. Ecol. 45, 261–267.

    Article  CAS  Google Scholar 

  • Gadd, G.M., Gray, D.J. and Newby, P.J. (1990) Role of melanin in fungal biosorption of tributyltin chloride. Appl. Microbiol. Biotechnol. 34, 116–121.

    Article  CAS  Google Scholar 

  • Gildon, A. and Tinker, P.B. (1983) Interactions of vesicular-arbuscular mycorrhizal infection and heavy metals in plants. I. The effects of heavy metals on the development of vesicular-arbuscular mycorrhizas. New Phytol. 95, 247–261.

    Article  CAS  Google Scholar 

  • Grill, E., Winnacker, E-L. and Zenk, M.H. (1986) Synthesis of seven different homologous phytochelatins in metal-exposed Schizosaccharomyces pombe cells. FEBS Lett. 197, 115–120.

    Article  CAS  Google Scholar 

  • Hamer, D.H. (1986) Metallothionein. Ann. Rev. Biochem. 55, 913–951.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, Y., Nakagawa, C.W., Uyakul, D., Imai, K., Isobe, M. and Goto, T. (1988) The change of cadystin components in Cd-binding peptides from the fission yeast during their induction by cadmium. Biochem. Cell Biol. 66, 288–295.

    Article  CAS  Google Scholar 

  • Huang, C-P., Huang, C-P. and Morehart, A.L. (1990) The removal of Cu(II) from dilute aqueous solutions by Saccharomyces cerevisiae. Wat. Res. 24, 433–439.

    Article  CAS  Google Scholar 

  • Hughes, M.N. and Poole, R.K. (1991) Metal speciation and microbial growth the hard (and soft) facts. J. Gen. Microbiol. 137, 725–734.

    Article  CAS  Google Scholar 

  • Joho, M., Inouhe, M., Tohoyama, H. and Murayama, T. (1990) A possible role of histidine in a nickel resistant mechanism of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 66, 333–338.

    Article  CAS  Google Scholar 

  • Joho, M., Ishikawa, Y., Kunikane, M., Inouhe, M., Tohoyama, H. and Murayama, T. (1992) The subcellular distribution of nickel in Ni-sensitive and Ni-resistant strains of Saccharomyces cerevisiae. Microbios 71, 149–159.

    CAS  PubMed  Google Scholar 

  • Jones, R.P. and Gadd, G.M. (1990) Ionic nutrition of yeast the physiological mechanisms involved and applications for biotechnology. Enzyme Microb. Technol. 12, 402–418.

    Article  CAS  Google Scholar 

  • Kessels, B.G.F., Beide, P.J.M. and Borst-Pauwels, G.W.F.H. (1985) Protection of Saccharomyces cerevisiae against Cd2+ toxicity by Ca2+. J. Gen. Microbiol. 131, 2533–2537.

    CAS  Google Scholar 

  • Kierans, M., Staines, A.M., Bennett, H. and Gadd, G.M. (1991) Silver tolerance and accumulation in yeasts. Biol. Metals 4, 100–106.

    Article  CAS  Google Scholar 

  • Klionsky, D.J., Herman, P.K. and Emr, S.D. (1990) The fungal vacuole: composition, function and biogenesis. Microbiol. Rev. 54, 266–292.

    CAS  PubMed  Google Scholar 

  • Konetzka, W.A. (1977) Microbiology of metal transformations, in “Microorganisms and Minerals” (Weinberg, E.D., Ed.), pp. 317–342. Marcel Dekker Inc., New York.

    Google Scholar 

  • Lepšová, A. and Mejstrík, V. (1989) Trace elements in fruit bodies of fungi under different pollution stress. Agric. Ecosyst. Environ. 28, 305–312.

    Article  Google Scholar 

  • Lerch, K. and Beltramini, M. (1983) Neurospora copper metallothionein: molecular structure and biological significance. Chem. Scripta 21, 109–115.

    CAS  Google Scholar 

  • Lewis, D. and Kiff, R.J. (1988) The removal of heavy metals from aqueous effluents by immobilised fungal biomass. Environ Technol. Lett. 9, 991–998.

    Article  CAS  Google Scholar 

  • McEldowney, S. (1990) Microbial biosorption of radionuclides in liquid effluent treatment. Appl. Biochem. Biotechnol. 26, 159–180.

    Article  CAS  Google Scholar 

  • Mehra, R.K. and Winge, D.R. (1991) Metal ion resistance in fungi: molecular mechanisms and their related expression. J. Cell. Biochem. 45, 30–40.

    Article  CAS  PubMed  Google Scholar 

  • Miller, A.J., Vogg, G. and Sanders, D. (1990) Cytosolic calcium homeostasis in fungi: roles of plasma membrane transport and intracellular sequestration of calcium. Proc. Nat. Acad. Sci. U.S.A. 87, 9348–9352.

    Article  CAS  Google Scholar 

  • Minney, S.F. and Quirk, A.V. (1985) Growth and adaptation of Saccharomyces cerevisiae at different cadmium concentrations. Microbios 42, 37–44.

    CAS  PubMed  Google Scholar 

  • Mowll, J.L. and Gadd, G.M. (1985) The effect of vehicular lead pollution on phylloplane mycoflora. Trans. Brit. Mycol. Soc. 84, 685–689.

    Article  CAS  Google Scholar 

  • Munger, K., Germann, U.A. and Lerch, K. (1987) The Neurospora crassa metallothionein gene. Regulation of expression and chromosomal location. J. Biol. Chem. 262, 7363–7367.

    CAS  PubMed  Google Scholar 

  • Mutoh, N., Kawabata, M. and Hayashi, Y. (1991) Tetramethylthiuram disulfide or dimethyldithiocarbamate induces the synthesis of cadystins, heavy metal chelating peptides, in Schizosaccharomyces pombe. Biochem. Biophys. Res. Comm. 176, 1068–1073.

    Article  CAS  PubMed  Google Scholar 

  • Nieboer, E. and Richardson, D.H.S. (1980) The replacement of the nondescript term “heavy metals” by a biologically and chemically significant classification of metal ions. Environ. Poll. 1, 3–26.

    Article  CAS  Google Scholar 

  • Norris, P.R. and Kelly, D.P. (1977) Accumulation of cadmium and cobalt by Saccharomyces cerevisiae. J. Gen. Microbiol. 99, 317–324.

    Article  CAS  Google Scholar 

  • Ochiai, E.I. (1987) “General Principles of Biochemistry of the Elements”, Plenum Press, New York.

    Book  Google Scholar 

  • Okorokov, L.A. (1985) Main mechanisms of ion transport and regulation of ion concentrations in the yeast cytoplasm, in “Environmental Regulation of Microbial Metabolism” (Kulaev, I.S., Dawes, E.A. and Tempest, D.W., Eds.), pp. 339–349. Academic Press, London.

    Google Scholar 

  • Ortiz, D.F., Kreppel, L., Speiser, D.M., Scheel, G., McDonald, G. and Ow, D.W. (1992) Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. Embo J. 11, 3491–3499.

    CAS  PubMed  Google Scholar 

  • Rauser, W.E. (1990) Phytochelatins. Ann. Rev. Biochem. 59, 61–86.

    Article  CAS  PubMed  Google Scholar 

  • Reese, R.N., Mehra, R.K., Tarbet, E.B. and Winge, D.R. (1988) Studies on the ?-glutamyl Cu-binding peptide from Schizosaccharomyces pombe. J. Biol. Chem. 263, 4186–4192.

    CAS  PubMed  Google Scholar 

  • Rodriguez-Navarro, A., Sancho, E.D. and Perez-Lloveres, C. (1981) Energy source for lithium efflux in yeast. Biochim. Biophys. Acta 640, 352–358.

    Article  CAS  PubMed  Google Scholar 

  • Ross, I.S. (1975) Some effects of heavy metals on fungal cells. Trans. Br. Mycol. Soc. 64, 175–193.

    Article  Google Scholar 

  • Sanders, D. (1988) Fungi, in “Solute Transport in Plant Cells and Tissues” (Baker, D.A. and Hall, J.L., Eds.), pp. 106–165. Longman, Harlow.

    Google Scholar 

  • Sanders, D. (1990) Kinetic modelling of plant and fungal membrane transport systems. Ann. Rev. Plant Physiol. Plant Mol. Biol. 41, 77–107.

    Article  CAS  Google Scholar 

  • Schinner, F. and Burgstaller, W. (1989) Extraction of zinc from industrial waste by a Penicillium sp.. Appl. Environ. Microbiol. 55, 1153–1156.

    CAS  PubMed  Google Scholar 

  • Senesi, N., Sposito, G. and Martin, J.P. (1987) Copper (II) and iron (III) complexation by humic acid-like polymers (melanins) from soil fungi. Sci. Total Environ. 62, 241–252.

    Article  CAS  Google Scholar 

  • Starling, A.P. and Ross, I.S. (1990) Uptake of manganese by Penicillium notatum. Microbios 63, 93–100.

    CAS  PubMed  Google Scholar 

  • Strandberg, G.W., Shumate, S.E. and Parrott, J.R. (1981) Microbial cell as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl. Environ. Microbiol. 41, 237–245.

    CAS  PubMed  Google Scholar 

  • Sutter, H.P., Jones, E.B.G. and Walchli, O. (1983) The mechanism of copper tolerance in Poria placenta (Fr.) Cke and Poria caillantii (Pers.) Fr.. Material und Organismen 18, 243–263.

    Google Scholar 

  • Tezuka, T. and Takasaki, Y. (1988) Biodegradation of phenylmercunc acetate by organomercury-resistant Penicillium sp. MR-2. Agric. Biol. Chem. 52, 3183–3185.

    Article  CAS  Google Scholar 

  • Thayer, J.S. (1988) “Organometallic Chemistry, An Overview”, VCH Verlagsgesellschaft, Weinheim.

    Google Scholar 

  • Theuvenet, A.P.R., Nieuwenhuis, B.J.W.M., Van de Mortel, J. and Borst-Pauwels, G.W.F.H. (1986) Effect of ethidium bromide and DEAE-dextran on divalent cation accumulation in yeast. Evidence for an ion-selective extrusion pump for divalent cations. Biochim. Biophys. Acta 855, 383–390.

    Article  CAS  PubMed  Google Scholar 

  • Thompson-Eagle, E.T. and Frankenberger, W.T. (1992) Bioremediation of soils contaminated with selenium. Adv. Soil Sci. 17, 261–310.

    Article  CAS  Google Scholar 

  • Tobin, J.M., Cooper, D.G. and Neufeld, R.J. (1984) Uptake of metal ions by Rhizopus arrhizus biomass. Appl. Environ. Microbiol. 47, 821–824.

    CAS  PubMed  Google Scholar 

  • Tobin, J.M., Cooper, D.G. and Neufeld, R.J. (1990) Investigation of the mechanism of metal uptake by denatured Rhizopus arrhizus biomass. Enz. Microb. Technol. 12, 591–595.

    Article  CAS  Google Scholar 

  • Townsley, C.C., Ross, I.S. and Atkins, A.S. (1986) Copper removal from a simulated leach effluent using the filamentous fungus Trichoderma viride, in “Immobilisation of Ions by Bio-sorption” (Eccles, H. and Hunt, S., Eds.), pp. 159–170. Ellis Horwood, Chichester.

    Google Scholar 

  • Tsezos, M. (1983) The role of chitin in uranium adsorption by Rhizopus arrhizus. Biotechnol. Bioeng. 25, 2025–2040.

    Article  CAS  PubMed  Google Scholar 

  • Tsezos, M. (1984) Recovery of uranium from biological adsorbents desorption equilibrium. Biotechnol. Bioeng. 26, 973–981.

    Article  CAS  PubMed  Google Scholar 

  • Tsezos, M. (1986) Adsorption by microbial biomass as a process for removal of ions from process or waste solutions, in “Immobilisation of Ions by Biosorption” (Eccles, H. and Hunt, S., Eds.), pp. 201–218. Ellis Horwood, Chichester.

    Google Scholar 

  • Tsezos, M. and Volesky, B. (1982a) The mechanism of uranium biosorption by Rhizopus arrhizus. Biotechnol. Bioeng. 24, 385–401.

    Article  CAS  PubMed  Google Scholar 

  • Tsezos, M. and Volesky, B. (1982b) The mechanism of thorium biosorption by Rhizopus arrhizus. Biotechnol. Bioeng. 24, 955–969.

    Article  CAS  PubMed  Google Scholar 

  • Volesky, B. (1990) “Biosorption of heavy metals”, CRC Press, Boca Raton.

    Google Scholar 

  • Wainwright, M. and Grayston, S.J. (1986) Oxidation of heavy metal sulphides by Aspergillus niger and Trichoderma harzianum. Trans. Br. Mycol. Soc. 86, 269–272.

    Article  CAS  Google Scholar 

  • Wainwright, M., Singleton, I. and Edyvean, R.G.J. (1990) Magnetite adsorption as a means of making fungal biomass susceptible to a magnetic field. Biorecovery 2, 37–53.

    CAS  Google Scholar 

  • Wakatsuki, T., Hayakawa, S., Hatayama, T., Kitamura, T. and Imahara, H. (1991) Solubilization and properties of copper reducing enzyme systems from the yeast cell surface in Debaryomyces hansenii. J. Ferment. Bioeng. 72, 79–86.

    Article  CAS  Google Scholar 

  • Wales, D.S. and Sagar, B.F. (1990) Recovery of metal ions by microfungal filters. J. Chem. Technol. Biotechnol. 49, 345–355.

    Article  CAS  PubMed  Google Scholar 

  • White, C. and Gadd, G.M. (1990) Biosorption of radionuclides by yeast and fungal biomass. J. Chem. Technol. Biotechnol. 49, 331–343.

    Article  CAS  PubMed  Google Scholar 

  • Winge, D.R., Nielson, K.B., Gray, W.R. and Hamer, D.H. (1985) Yeast metallothionein sequence and metal binding properties. J. Biol. Chem. 260, 14464–14470.

    CAS  PubMed  Google Scholar 

  • Winge, D.R., Reese, R.N., Mehra, R.K., Tarbet, E.B., Hughes, A.K. and Dameron, C.T. (1989) Structural aspects of metal-γ-glutamyl peptides, in “Metal Ion Homeostasis: Molecular Biology and Chemistry” (Hamer, D.H. and Winge, D.R., Eds.), pp. 301–311. Alan R. Liss Inc., New York.

    Google Scholar 

  • Winkelmann, G. (1992) Structures and functions of fungal siderophores containing hydroxamate and complexone type iron binding ligands. Mycol. Res. 96, 529–534.

    Article  CAS  Google Scholar 

  • Yakubu, N.A. and Dudeney, A.W.L. (1986) Bisorption of uranium with Aspergillus niger, in “Immobilisation of Ions by Bio-sorption” (Eccles, H. and Hunt, S., Eds), pp. 183–200. Ellis Horwood, Chichester.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gadd, G.M. (1994). Interactions of Fungi with Toxic Metals. In: Powell, K.A., Renwick, A., Peberdy, J.F. (eds) The Genus Aspergillus . Federation of European Microbiological Societies Symposium Series, vol 69. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0981-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0981-7_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0983-1

  • Online ISBN: 978-1-4899-0981-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics