Interactions of Fungi with Toxic Metals

  • G. M. Gadd
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 69)


Interactions of toxic metals with fungi have long been of importance since metal toxicity still is the basis of many fungicidal preparations while in an environmental context, accelerating pollution of the natural environment has led to increased interest because of the sometimes dominant presence of fungi in metal-polluted habitats, the translocation of toxic metals and radionuclides to fruit bodies of edible higher fungi, and the significance of mycorrhizal fungi in the amelioration of metal phytotoxicity (Colpaert and Van Assche, 1987). Furthermore, the use of fungal (and other microbial) biomass for the detoxification of metal/radionuclide-containing industrial effluents is of biotechnological potential (Gadd, 1990, 1992a).


Heavy Metal Fungal Biomass Vacuolar Membrane Schizosaccharomyces Pombe Citric Acid Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adjimani, J.P. and Emery, T. (1987) Iron uptake in Mycelia Sterilia EP-76. J. Bacterid. 169, 3664–3668.Google Scholar
  2. Arnebrant, K., Bååth, E. and Nordgren, A. (1987) Copper tolerance of microfungi isolated from polluted and unpolluted forest soil. Mycologia 79, 890–895.CrossRefGoogle Scholar
  3. Avery, S.V. and Tobin, J. (1992) Mechanisms of strontium uptake by laboratory and brewing strains of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 58, 3883–3889.PubMedGoogle Scholar
  4. Anraku, Y., Umemoto, N., Hirata, R. and Wada, Y. (1989) Structure and function of the yeast vacuolar membrane proton ATPase. J. Bioenergetics Biomembr. 21, 589–603.CrossRefGoogle Scholar
  5. Babich, H. and Stotzky, G. (1980) Environmental factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms. CRC Crit. Rev. Microbiol. 8, 99–145.CrossRefGoogle Scholar
  6. Babich, H. and Stotzky, G. (1985) Heavy metal toxicity to microbe-mediated ecologic processes: a review and potential application to regulatory policies. Environ. Res. 36, 111–137.PubMedCrossRefGoogle Scholar
  7. Bewley, R.J.F. (1980) Effects of heavy metal pollution on oak leaf microorganisms. Appl. Environ. Microbiol. 40, 1053–1059.PubMedGoogle Scholar
  8. Bewley, R.J.F. and Campbell, R. (1980) Influence of zinc, lead and cadmium pollutants on microflora of hawthorn leaves. Microbial Ecol. 6, 227–240.CrossRefGoogle Scholar
  9. Bianchi, M.E., Carbone, M.L. and Lucchini, G. (1981) Mn2+ and Mg2+ uptake in Mn-sensitive and Mn-resistant yeast strains. Plant Sci. Lett. 22, 345–352.CrossRefGoogle Scholar
  10. Borst-Pauwels, G.W.F.H. (1981) Ion transport in yeast. Biochim. Biophys. Acta 650, 88–127.PubMedCrossRefGoogle Scholar
  11. Bradley, R., Burt, A.J. and Read, D.J. (1982) The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol. 91, 197–209.CrossRefGoogle Scholar
  12. Butt, T.R. and Ecker, D.J. (1987) Yeast metallothionein and applications in biotechnology. Microbiol. Rev. 51, 351–364.PubMedGoogle Scholar
  13. Campbell, R. and Martin, M.H. (1990) Continuous flow fermentation to purify waste water by the removal of cadmium. Wat. Air Soil Poll. 50, 397–408.CrossRefGoogle Scholar
  14. Collins, Y.E. and Stotzky, G. (1989) Factors affecting the toxicity of heavy metals to microbes, in “Metal Ions and Bacteria” (Beveridge, T.J. and Doyle, R.J., Eds), pp. 31–90. Wiley, New York.Google Scholar
  15. Collins, Y.E. and Stotzky, G. (1992) Heavy metals alter the electrokinetic properties of bacteria, yeasts and clay minerals. Appl. Environ. Microbiol. 58, 1592–1600.PubMedGoogle Scholar
  16. Colpaert, J.V. and Van Assche, J.A. (1987) Heavy metal tolerance in some ectomycorrhizal fungi. Functional Ecol. 1, 415–421.CrossRefGoogle Scholar
  17. Cooney, J.J. and Wuertz, S. (1989) Toxic effects of tin compounds on microorganisms. J. Ind. Microbiol. 4, 375–402.CrossRefGoogle Scholar
  18. Corfield, P.S. and Smith, D.G. (1970) The endoplasmic reticulum as the site of potassium tellurite reduction in yeasts. J. Gen. Microbiol. 63, 311–316.CrossRefGoogle Scholar
  19. De Rome, L. and Gadd, G.M. (1987) Copper adsorption by Rhizopus arrhizus, Cladosporium resinae and Penicillium ium. Appl. Microbiol. Biotechnol. 26, 84–90.CrossRefGoogle Scholar
  20. De Rome, L. and Gadd, G.M. (1991) Use of pelleted and immobilized yeast and fungal biomass for heavy metal and radionuclide recovery. J. Ind. Microbiol. 7, 97–104.CrossRefGoogle Scholar
  21. Dixon, R.K. (1988) Response of ectomycorrhizal Quercus rubra to soil cadmium, nickel and lead. Soil Biol. Biochem. 20, 555–559.Google Scholar
  22. Duxbury, T. (1985) Ecological aspects of heavy metal responses in microorganisms, in “Advances in Microbial Ecology” (Marshall, K.C., Ed.), pp. 185–235. Plenum Press, New York.CrossRefGoogle Scholar
  23. Fogel, S., Welch, J.W. and Maloney, D.H. (1988) The molecular genetics of copper resistance in Saccharomyces cerevisiae a paradigm for non-conventional yeasts. J. Basic Microbiol. 28, 147–160.PubMedCrossRefGoogle Scholar
  24. Franz, A., Burgstaller, W. and Schinner, F. (1991) Leaching with Penicillium simplicissimum: influence of metals and buffers on proton extrusion and citric acid production. Appl. Environ. Microbiol. 57, 769–774.PubMedGoogle Scholar
  25. Freedman, B. and Hutchison, T.C. (1980) Effects of smelter pollutants on forest leaf litter decomposition near a nickel-copper smelter at Sudbury, Ontario. Can. J. Bot. 58, 1722–1736.CrossRefGoogle Scholar
  26. Gadd, G.M. (1984) Effect of copper on Aureobasidium pullulans in solid medium: adaptation not necessary for tolerant behaviour. Trans. Brit. Mycol. Soc. 82, 546–549.CrossRefGoogle Scholar
  27. Gadd, G.M. (1986) The responses of fungi towards heavy metals, in “Microbes in Extreme Environments” (Herbert, R.A. and Codd, G.A., Eds.), pp. 83–110. Academic Press, London.Google Scholar
  28. Gadd, G.M. (1988) Accumulation of metals by microorganisms and algae, in “Biotechnology A Comprehensive Treatise, Volume 6b, Special Microbial Processes” (Rehm, H-J, Ed.), pp. 401–433. VCH Verlagsgesellschaft, Weinheim.Google Scholar
  29. Gadd, G.M. (1990) Fungi and yeasts for metal binding, in:“Microbial Mineral Recovery” (Ehrlich, H. and Brierley, C.L., Eds.), pp. 249–275. McGraw-Hill, New York.Google Scholar
  30. Gadd, G.M. (1992a) Microbial control of heavy metal pollution, in “Microbial Control of Environmental Pollution” (Fry, J.C., Gadd, G.M., Herbert, R.A., Jones, C.W. and Watson-Craik, I., Eds.), pp. 59–88. Cambridge University Press, Cambridge.Google Scholar
  31. Gadd, G.M. (1992b) Metals and microorganisms: a problem of definition. FEMS Microbiol. Lett. 100, 197–204.Google Scholar
  32. Gadd, G.M. (1992c) Molecular biology and biotechnology of microbial interactions with organic and inorganic heavy metal compounds, in:“Molecular Biology and Biotechnology of Extremophiles” (Herbert, R.A. and Sharp, R.J., Eds.), pp. 225–257. Blackie and Sons, Glasgow.CrossRefGoogle Scholar
  33. Gadd, G.M. (1993) Interactions of fungi with toxic metals. New Phytol. 124, 1–35.CrossRefGoogle Scholar
  34. Gadd, G.M. and Griffiths, A.J. (1978) Microorganisms and heavy metal toxicity. Microbial Ecol. 4, 303–317.CrossRefGoogle Scholar
  35. Gadd, G.M. and De Rome, L. (1988) Biosorption of copper by fungal melanin. Appl. Microbiol. Biotechnol. 29, 610–617.CrossRefGoogle Scholar
  36. Gadd, G.M. and White, C. (1985) Copper uptake by Penicillium ochro-chloron: influence of pH on toxicity and demonstration of energy-dependent copper influx using protoplasts. J. Gen. Microbiol. 131, 1875–1879.Google Scholar
  37. Gadd, G.M. and White, C. (1989a) Heavy metal and radionuclide accumulation and toxicity in fungi and yeasts, in:“Metal-Microbe Interactions” (Poole, R.K. and Gadd, G.M., Eds.), pp. 19–38. IRL Press, Oxford.Google Scholar
  38. Gadd, G.M. and White, C. (1989b) The removal of thorium from simulated acid process streams by fungal biomass. Biotechnol. Bioeng. 33, 592–597.PubMedCrossRefGoogle Scholar
  39. Gadd, G.M. and White, C. (1992) Removal of thorium from simulated acid process streams by fungal biomass: potential for thorium desorption and reuse of biomass and desorbent. J. Chem. Technol. Biotechnol. 55, 39–44.CrossRefGoogle Scholar
  40. Gadd, G.M., Stewart, A., White, C. and Mowll, J.L. (1984) Copper uptake by whole cells and protoplasts of a wild-type and copper-resistant strain of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 24, 231–234.CrossRefGoogle Scholar
  41. Gadd, G.M., White, C. and Mowll, J.L. (1987) Heavy metal uptake by intact cells and protoplasts of Aureobasidium pullulans. FEMS Microbiol. Ecol. 45, 261–267.CrossRefGoogle Scholar
  42. Gadd, G.M., Gray, D.J. and Newby, P.J. (1990) Role of melanin in fungal biosorption of tributyltin chloride. Appl. Microbiol. Biotechnol. 34, 116–121.CrossRefGoogle Scholar
  43. Gildon, A. and Tinker, P.B. (1983) Interactions of vesicular-arbuscular mycorrhizal infection and heavy metals in plants. I. The effects of heavy metals on the development of vesicular-arbuscular mycorrhizas. New Phytol. 95, 247–261.CrossRefGoogle Scholar
  44. Grill, E., Winnacker, E-L. and Zenk, M.H. (1986) Synthesis of seven different homologous phytochelatins in metal-exposed Schizosaccharomyces pombe cells. FEBS Lett. 197, 115–120.CrossRefGoogle Scholar
  45. Hamer, D.H. (1986) Metallothionein. Ann. Rev. Biochem. 55, 913–951.PubMedCrossRefGoogle Scholar
  46. Hayashi, Y., Nakagawa, C.W., Uyakul, D., Imai, K., Isobe, M. and Goto, T. (1988) The change of cadystin components in Cd-binding peptides from the fission yeast during their induction by cadmium. Biochem. Cell Biol. 66, 288–295.CrossRefGoogle Scholar
  47. Huang, C-P., Huang, C-P. and Morehart, A.L. (1990) The removal of Cu(II) from dilute aqueous solutions by Saccharomyces cerevisiae. Wat. Res. 24, 433–439.CrossRefGoogle Scholar
  48. Hughes, M.N. and Poole, R.K. (1991) Metal speciation and microbial growth the hard (and soft) facts. J. Gen. Microbiol. 137, 725–734.CrossRefGoogle Scholar
  49. Joho, M., Inouhe, M., Tohoyama, H. and Murayama, T. (1990) A possible role of histidine in a nickel resistant mechanism of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 66, 333–338.CrossRefGoogle Scholar
  50. Joho, M., Ishikawa, Y., Kunikane, M., Inouhe, M., Tohoyama, H. and Murayama, T. (1992) The subcellular distribution of nickel in Ni-sensitive and Ni-resistant strains of Saccharomyces cerevisiae. Microbios 71, 149–159.PubMedGoogle Scholar
  51. Jones, R.P. and Gadd, G.M. (1990) Ionic nutrition of yeast the physiological mechanisms involved and applications for biotechnology. Enzyme Microb. Technol. 12, 402–418.CrossRefGoogle Scholar
  52. Kessels, B.G.F., Beide, P.J.M. and Borst-Pauwels, G.W.F.H. (1985) Protection of Saccharomyces cerevisiae against Cd2+ toxicity by Ca2+. J. Gen. Microbiol. 131, 2533–2537.Google Scholar
  53. Kierans, M., Staines, A.M., Bennett, H. and Gadd, G.M. (1991) Silver tolerance and accumulation in yeasts. Biol. Metals 4, 100–106.CrossRefGoogle Scholar
  54. Klionsky, D.J., Herman, P.K. and Emr, S.D. (1990) The fungal vacuole: composition, function and biogenesis. Microbiol. Rev. 54, 266–292.PubMedGoogle Scholar
  55. Konetzka, W.A. (1977) Microbiology of metal transformations, in “Microorganisms and Minerals” (Weinberg, E.D., Ed.), pp. 317–342. Marcel Dekker Inc., New York.Google Scholar
  56. Lepšová, A. and Mejstrík, V. (1989) Trace elements in fruit bodies of fungi under different pollution stress. Agric. Ecosyst. Environ. 28, 305–312.CrossRefGoogle Scholar
  57. Lerch, K. and Beltramini, M. (1983) Neurospora copper metallothionein: molecular structure and biological significance. Chem. Scripta 21, 109–115.Google Scholar
  58. Lewis, D. and Kiff, R.J. (1988) The removal of heavy metals from aqueous effluents by immobilised fungal biomass. Environ Technol. Lett. 9, 991–998.CrossRefGoogle Scholar
  59. McEldowney, S. (1990) Microbial biosorption of radionuclides in liquid effluent treatment. Appl. Biochem. Biotechnol. 26, 159–180.CrossRefGoogle Scholar
  60. Mehra, R.K. and Winge, D.R. (1991) Metal ion resistance in fungi: molecular mechanisms and their related expression. J. Cell. Biochem. 45, 30–40.PubMedCrossRefGoogle Scholar
  61. Miller, A.J., Vogg, G. and Sanders, D. (1990) Cytosolic calcium homeostasis in fungi: roles of plasma membrane transport and intracellular sequestration of calcium. Proc. Nat. Acad. Sci. U.S.A. 87, 9348–9352.CrossRefGoogle Scholar
  62. Minney, S.F. and Quirk, A.V. (1985) Growth and adaptation of Saccharomyces cerevisiae at different cadmium concentrations. Microbios 42, 37–44.PubMedGoogle Scholar
  63. Mowll, J.L. and Gadd, G.M. (1985) The effect of vehicular lead pollution on phylloplane mycoflora. Trans. Brit. Mycol. Soc. 84, 685–689.CrossRefGoogle Scholar
  64. Munger, K., Germann, U.A. and Lerch, K. (1987) The Neurospora crassa metallothionein gene. Regulation of expression and chromosomal location. J. Biol. Chem. 262, 7363–7367.PubMedGoogle Scholar
  65. Mutoh, N., Kawabata, M. and Hayashi, Y. (1991) Tetramethylthiuram disulfide or dimethyldithiocarbamate induces the synthesis of cadystins, heavy metal chelating peptides, in Schizosaccharomyces pombe. Biochem. Biophys. Res. Comm. 176, 1068–1073.PubMedCrossRefGoogle Scholar
  66. Nieboer, E. and Richardson, D.H.S. (1980) The replacement of the nondescript term “heavy metals” by a biologically and chemically significant classification of metal ions. Environ. Poll. 1, 3–26.CrossRefGoogle Scholar
  67. Norris, P.R. and Kelly, D.P. (1977) Accumulation of cadmium and cobalt by Saccharomyces cerevisiae. J. Gen. Microbiol. 99, 317–324.CrossRefGoogle Scholar
  68. Ochiai, E.I. (1987) “General Principles of Biochemistry of the Elements”, Plenum Press, New York.CrossRefGoogle Scholar
  69. Okorokov, L.A. (1985) Main mechanisms of ion transport and regulation of ion concentrations in the yeast cytoplasm, in “Environmental Regulation of Microbial Metabolism” (Kulaev, I.S., Dawes, E.A. and Tempest, D.W., Eds.), pp. 339–349. Academic Press, London.Google Scholar
  70. Ortiz, D.F., Kreppel, L., Speiser, D.M., Scheel, G., McDonald, G. and Ow, D.W. (1992) Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. Embo J. 11, 3491–3499.PubMedGoogle Scholar
  71. Rauser, W.E. (1990) Phytochelatins. Ann. Rev. Biochem. 59, 61–86.PubMedCrossRefGoogle Scholar
  72. Reese, R.N., Mehra, R.K., Tarbet, E.B. and Winge, D.R. (1988) Studies on the ?-glutamyl Cu-binding peptide from Schizosaccharomyces pombe. J. Biol. Chem. 263, 4186–4192.PubMedGoogle Scholar
  73. Rodriguez-Navarro, A., Sancho, E.D. and Perez-Lloveres, C. (1981) Energy source for lithium efflux in yeast. Biochim. Biophys. Acta 640, 352–358.PubMedCrossRefGoogle Scholar
  74. Ross, I.S. (1975) Some effects of heavy metals on fungal cells. Trans. Br. Mycol. Soc. 64, 175–193.CrossRefGoogle Scholar
  75. Sanders, D. (1988) Fungi, in “Solute Transport in Plant Cells and Tissues” (Baker, D.A. and Hall, J.L., Eds.), pp. 106–165. Longman, Harlow.Google Scholar
  76. Sanders, D. (1990) Kinetic modelling of plant and fungal membrane transport systems. Ann. Rev. Plant Physiol. Plant Mol. Biol. 41, 77–107.CrossRefGoogle Scholar
  77. Schinner, F. and Burgstaller, W. (1989) Extraction of zinc from industrial waste by a Penicillium sp.. Appl. Environ. Microbiol. 55, 1153–1156.PubMedGoogle Scholar
  78. Senesi, N., Sposito, G. and Martin, J.P. (1987) Copper (II) and iron (III) complexation by humic acid-like polymers (melanins) from soil fungi. Sci. Total Environ. 62, 241–252.CrossRefGoogle Scholar
  79. Starling, A.P. and Ross, I.S. (1990) Uptake of manganese by Penicillium notatum. Microbios 63, 93–100.PubMedGoogle Scholar
  80. Strandberg, G.W., Shumate, S.E. and Parrott, J.R. (1981) Microbial cell as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl. Environ. Microbiol. 41, 237–245.PubMedGoogle Scholar
  81. Sutter, H.P., Jones, E.B.G. and Walchli, O. (1983) The mechanism of copper tolerance in Poria placenta (Fr.) Cke and Poria caillantii (Pers.) Fr.. Material und Organismen 18, 243–263.Google Scholar
  82. Tezuka, T. and Takasaki, Y. (1988) Biodegradation of phenylmercunc acetate by organomercury-resistant Penicillium sp. MR-2. Agric. Biol. Chem. 52, 3183–3185.CrossRefGoogle Scholar
  83. Thayer, J.S. (1988) “Organometallic Chemistry, An Overview”, VCH Verlagsgesellschaft, Weinheim.Google Scholar
  84. Theuvenet, A.P.R., Nieuwenhuis, B.J.W.M., Van de Mortel, J. and Borst-Pauwels, G.W.F.H. (1986) Effect of ethidium bromide and DEAE-dextran on divalent cation accumulation in yeast. Evidence for an ion-selective extrusion pump for divalent cations. Biochim. Biophys. Acta 855, 383–390.PubMedCrossRefGoogle Scholar
  85. Thompson-Eagle, E.T. and Frankenberger, W.T. (1992) Bioremediation of soils contaminated with selenium. Adv. Soil Sci. 17, 261–310.CrossRefGoogle Scholar
  86. Tobin, J.M., Cooper, D.G. and Neufeld, R.J. (1984) Uptake of metal ions by Rhizopus arrhizus biomass. Appl. Environ. Microbiol. 47, 821–824.PubMedGoogle Scholar
  87. Tobin, J.M., Cooper, D.G. and Neufeld, R.J. (1990) Investigation of the mechanism of metal uptake by denatured Rhizopus arrhizus biomass. Enz. Microb. Technol. 12, 591–595.CrossRefGoogle Scholar
  88. Townsley, C.C., Ross, I.S. and Atkins, A.S. (1986) Copper removal from a simulated leach effluent using the filamentous fungus Trichoderma viride, in “Immobilisation of Ions by Bio-sorption” (Eccles, H. and Hunt, S., Eds.), pp. 159–170. Ellis Horwood, Chichester.Google Scholar
  89. Tsezos, M. (1983) The role of chitin in uranium adsorption by Rhizopus arrhizus. Biotechnol. Bioeng. 25, 2025–2040.PubMedCrossRefGoogle Scholar
  90. Tsezos, M. (1984) Recovery of uranium from biological adsorbents desorption equilibrium. Biotechnol. Bioeng. 26, 973–981.PubMedCrossRefGoogle Scholar
  91. Tsezos, M. (1986) Adsorption by microbial biomass as a process for removal of ions from process or waste solutions, in “Immobilisation of Ions by Biosorption” (Eccles, H. and Hunt, S., Eds.), pp. 201–218. Ellis Horwood, Chichester.Google Scholar
  92. Tsezos, M. and Volesky, B. (1982a) The mechanism of uranium biosorption by Rhizopus arrhizus. Biotechnol. Bioeng. 24, 385–401.PubMedCrossRefGoogle Scholar
  93. Tsezos, M. and Volesky, B. (1982b) The mechanism of thorium biosorption by Rhizopus arrhizus. Biotechnol. Bioeng. 24, 955–969.PubMedCrossRefGoogle Scholar
  94. Volesky, B. (1990) “Biosorption of heavy metals”, CRC Press, Boca Raton.Google Scholar
  95. Wainwright, M. and Grayston, S.J. (1986) Oxidation of heavy metal sulphides by Aspergillus niger and Trichoderma harzianum. Trans. Br. Mycol. Soc. 86, 269–272.CrossRefGoogle Scholar
  96. Wainwright, M., Singleton, I. and Edyvean, R.G.J. (1990) Magnetite adsorption as a means of making fungal biomass susceptible to a magnetic field. Biorecovery 2, 37–53.Google Scholar
  97. Wakatsuki, T., Hayakawa, S., Hatayama, T., Kitamura, T. and Imahara, H. (1991) Solubilization and properties of copper reducing enzyme systems from the yeast cell surface in Debaryomyces hansenii. J. Ferment. Bioeng. 72, 79–86.CrossRefGoogle Scholar
  98. Wales, D.S. and Sagar, B.F. (1990) Recovery of metal ions by microfungal filters. J. Chem. Technol. Biotechnol. 49, 345–355.PubMedCrossRefGoogle Scholar
  99. White, C. and Gadd, G.M. (1990) Biosorption of radionuclides by yeast and fungal biomass. J. Chem. Technol. Biotechnol. 49, 331–343.PubMedCrossRefGoogle Scholar
  100. Winge, D.R., Nielson, K.B., Gray, W.R. and Hamer, D.H. (1985) Yeast metallothionein sequence and metal binding properties. J. Biol. Chem. 260, 14464–14470.PubMedGoogle Scholar
  101. Winge, D.R., Reese, R.N., Mehra, R.K., Tarbet, E.B., Hughes, A.K. and Dameron, C.T. (1989) Structural aspects of metal-γ-glutamyl peptides, in “Metal Ion Homeostasis: Molecular Biology and Chemistry” (Hamer, D.H. and Winge, D.R., Eds.), pp. 301–311. Alan R. Liss Inc., New York.Google Scholar
  102. Winkelmann, G. (1992) Structures and functions of fungal siderophores containing hydroxamate and complexone type iron binding ligands. Mycol. Res. 96, 529–534.CrossRefGoogle Scholar
  103. Yakubu, N.A. and Dudeney, A.W.L. (1986) Bisorption of uranium with Aspergillus niger, in “Immobilisation of Ions by Bio-sorption” (Eccles, H. and Hunt, S., Eds), pp. 183–200. Ellis Horwood, Chichester.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • G. M. Gadd
    • 1
  1. 1.Department of Biological SciencesUniversity of DundeeDundeeUK

Personalised recommendations