Modern Approaches to the Taxonomy of Aspergillus

  • Brian W. Bainbridge
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 69)


Techniques from molecular biology have provided a series of new tools for the analysis of diversity in the fungi. These techniques have been applied to a variety of fungal groups but only rather limited work has been done on the genus Aspergillus, which is surprising considering the economic importance of species within the genus. The availability of a detailed molecular genetic systems in Aspergillus nidulans has been of considerable help in providing a scientific base, but it appears on the whole that molecular geneticists have not been very interested in the taxonomy of the genus. However, a need to study the epidemiology, detection, diagnosis, identification, classification, characterisation and quantification of Aspergillus has resulted in an increasing interest in the taxonomic basis for differences within the genus. This has made it essential that closer links are forged between molecular biologists and taxonomists.


Internally Transcribe Spacer Aspergillus Nidulans Slot Blot Nucleic Acid Probe External Transcribe Spacer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amann, R.I., Krumholz, L. and Stahl, D.A. (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic and environmental studies in microbiology. J. Bact. 172, 762–770.PubMedGoogle Scholar
  2. Aufauvre-Brown, A., Cohen, J. and Holden, D.W. (1992) Use of randomly amplified polymorphic DNA markers to distinguish isolates of Aspergillus fumigatus. J. Clinical Micro. 30, 2991–2993.Google Scholar
  3. Bainbridge, B.W., Spreadbury, C.L., Scalise, E.G. and Cohen, J. (1990) Improved methods for the preparation of high molecular weight DNA from large and small scale cultures of filamentous fungi. FEMS Micro. Lett. 66, 113–118.Google Scholar
  4. Barns, S.M., Lane, D.J., Sogin, M.L., Bibneau, C. and Weisberg, W.G . (1991) Evolutionary relationships among Candida species and relatives. J. Bact 173, 2250–2255.PubMedGoogle Scholar
  5. Bell, S.P., Pikaard, C.S., Reeder, R.H. and Tjian, R. (1989) Molecular mechanisms governing species-specific transcription of ribosomal RNA. Cell 59, 489–497.PubMedCrossRefGoogle Scholar
  6. Buchko, J. and Klassen, G.R. (1990) Detection of length heterogeneity in the ribosomal DNA of Pythium ultimum by PCR amplification of the intergenic region. Curr. Genet. 18, 203–205.PubMedCrossRefGoogle Scholar
  7. Chang, J., Oyaizu, H. and Sugiyama, J (1991) Phylogenetic relationships among eleven selected species of Aspergillus and associated teleomorphic genera estimated from 18S ribosomal RNA partial sequences. J. Gen. Appl. Microbiol. 37, 289–308.CrossRefGoogle Scholar
  8. Crowhurst, R.N., Hawthorne, B.T., Rikkerink, E.H.A. and Templeton, M.D. (1991) Differentiation of Fusarium solani f.sp. Cucurbitae races 1 and 2 by random amplification of polymorphic DNA. Curr. Genet. 20, 391–396.PubMedCrossRefGoogle Scholar
  9. Dover, G.A. and Flavell, R.B. (1984) Molecular co-evolution : DNA divergence and the maintenance of function. Cell 38, 622–623.PubMedCrossRefGoogle Scholar
  10. Dutta, S.K. and Verma, M. (1990) Primary structure of the nontranscribed spacer region and flanking sequences of the ribosomal DNA of Neurospora crassa and comparison with other organisms. Biochem. Biophys. Res. Comm. 170, 187–193.PubMedCrossRefGoogle Scholar
  11. Eckert, K.A. and Kunkel, T.A. (1991) The fidelity of DNA polymerases used in the polymerase chain reactions in “PCR a practical approach” (McPherson, M.J., Quirke, P. and Taylor, G.R. Eds.) pp 225–244. IRL Press, Oxford. Edman, J.C.Google Scholar
  12. Edman, J. C., Kovacs, J. A., Masur, H., Santi, D. V., Elwood, H. J. and Sogin, M. L. (1988) Ribosomal RNA sequence shows Pneumocystis carnii to be a member of the fungi. Nature, 334, 519–522.PubMedCrossRefGoogle Scholar
  13. Fournier, P., Gaillardin, C., Persuy, M., Klootwijk, J. and van Heerikhuizen, H. (1986) Heterogeneity in the ribosomal family of the yeast Yarrowia lipolytica : genomic organisation and segregation analysis. Gene 42, 273–282.PubMedCrossRefGoogle Scholar
  14. Garber, R.C., Turgeon, B.G., Selker, E.U. and Yoder, O.C. (1988) Organisation of the ribosomal RNA genes in the fungus Cochliobolus heterotrophus. Curr. Genetics 14, 573–582.CrossRefGoogle Scholar
  15. Giovannoni, S.J., DeLong, E.F., Olsen, G.J. and Pace, N.R. (1988) Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J. Bact. 170 720–726.PubMedGoogle Scholar
  16. Goodwin, P.H. and Annis, S.L. (1991) Rapid identification of Genetic Variation and pathotype of Leptosphaeria maculans by Random Amplified Polymorphic DNA assay. Appl. Environ. Micro. 57, 2482–2486.Google Scholar
  17. Jefferys, A.J., MacLeod, A., Tanaki, K., Neil, D.L. and Monckton, D.G. (1991) Minisatellite repeat coding as a digital approach to DNA typing. Nature, 354, 201–209.Google Scholar
  18. Klich, M.A. and Pitt, J.I. (1988) A laboratory guide to common Aspergillus species and their teleomorphs. Commonwealth Scientific and Industrial Research Organisation, North Ryde, New South Wales, Australia.Google Scholar
  19. Kovacs, J.A., Masur, H., Santi, D.V., Elwood, H.J. and Sogin, M.L. (1988) Ribosomal RNA sequence shows Pneumocystis carnii to be a member of the fungi. Nature, 334, 519–522.PubMedCrossRefGoogle Scholar
  20. Lockington, R.A., Taylor, G.G., Winther, M., Scazzocchio, C. and Davies, R.W. (1982) A physical map of the ribosomal DNA repeat unit of Aspergillus nidulans. Gene 20, 135–137.PubMedCrossRefGoogle Scholar
  21. Metzenberg, R.L. (1991) Benefactors’ lecture: the impact of molecular biology on mycology. Mycol. Res. 95, 9–13.CrossRefGoogle Scholar
  22. Meyer, W., Koch, A., Niemann, C., Beyermann, B., Epplen, J.T. and Borner, X. (1991) Differentiation of species and strains among filamentous fungi by DNA fingerprinting. Curr. Genet 19, 239–242.PubMedCrossRefGoogle Scholar
  23. Moens, W. (1992) Fast design of Fungal PCR Markers. Proceedings of the Ist European Conference on Fungal Genetics at Nottingham August 1992 P2/58.Google Scholar
  24. Neefs, J., de Peer, Y., de Rijk, P., Goris, A. and de Wachter, R. (1991) Compilation of small ribosomal subunit RNA sequences. Nuc. Acids Res. 19 suppl., 1987–2015.CrossRefGoogle Scholar
  25. Pace, N.R., Olsen, G.J. and Woese, C.R. (1986) Ribosomal RNA phytogeny and the primary lines of evolutionary descent. Cell 45, 325–326.PubMedCrossRefGoogle Scholar
  26. Payne, G.A., Nystrom, G.J., Bhatnagar, D. Cleveland, T.E. and Woloshuk, C.P. (1993) Cloning of the afl-2 gene involved in aflatoxin biosynthesis from Aspergillus flavus. Appl. Environ. Micro. 59, 156–162.Google Scholar
  27. Rijk, de P., Neefs, J., Van de Peer, Y. and de Wachter, R. (1992) Compilation of small ribosomal RNA sequences. Nuc. Acids Res. 20 suppl. 2075–2089.CrossRefGoogle Scholar
  28. Skryabin, K.G., Eldarov, M.A., Larionov, V.I., Bayev, A.A., Klootwijk, J., Regt, V.C.H.F., Veldman, G.M., Planta, R.J., Georgiev, O.I. and Hadjiiolov, A.A. (1984) Structure and function of the nontranscribed spacer region of yeast rDNA. Nuc. Acid. Res.12, 2955–2968.CrossRefGoogle Scholar
  29. Sober, E. (1989) Reconstructing the past: Parsimony, evolution, and inference. M.T Press, Cambridge, MA, USA.Google Scholar
  30. Sogin, M.L. and Gunderson, J.H. (1987) Structural diversity of eukaryotic small subunit ribosomal RNAs. Evolutionary implications. Annals N.Y. Acad.Sciences 503, 125–139.CrossRefGoogle Scholar
  31. Spreadbury, C.X., Bainbridge, B.W. and Cohen, J. (1990) Restriction fragment length polymorphisms in isolates of Aspergillus fumigatus probed with part of the intergenic spacer region from the ribosomal RNA gene complex of Aspergillus nidulans . J. Gen. Microbiol. 136, 1991–1994.PubMedCrossRefGoogle Scholar
  32. Spreadbury, C.L., Holden, D., Aufauvre-Brown, A., Bainbridge, B.W. and Cohen, J. (1993) Detection of Aspergillus fumigatus by the polymerase chain reaction. J. Clin. Microbiol. 31, 615–621.PubMedGoogle Scholar
  33. Swofford, D.L. and Olsen, G.J. (1990) Phylogeny reconstruction in “Molecular Systematics” (Hillis, D.M. and Moritz, C., Eds.) pp. 411–501. Sinhauer, Sunderland, Mass, U.S.A.Google Scholar
  34. Tautz, D., Tautz, C., Webb, D. and Dover, G.A. (1987) Evolutionary divergence of promoters and spacers in the rDNA family of four Drosophila species. Implications for molecular co-evolution in multigene families. J. Mol. Biol. 195, 525–542.PubMedCrossRefGoogle Scholar
  35. Verma, M. and Dutta, S.K. (1987) Phylogenetic implications of the heterogeneity of the nontranscribed spacer of rDNA repeating unit in various Neurospora and related fungal species. Curr. Genet. 11, 309–314.PubMedCrossRefGoogle Scholar
  36. Wakefield, A.E., Peters, S.E., Banjeri, S., Bridge, P.D., Hall, G.S., Hawksworth, D.L., Guiver, L.A., Allen, A.G. and Hopkin, J.M. (1992) Pneumocystis carnii shows DNA homology with the usomycetous red fungi. Molec. Microbiol. 6, 1903–1911.CrossRefGoogle Scholar
  37. Welsh, J., Petersen, C. and McClelland, M. (1991) Polymorphisms generated by arbitrarily primed PCR in the mouse: application to strain identification and genetic mapping. Nucl. Acid Res. 19, 303–306.CrossRefGoogle Scholar
  38. White, T.J., Bruns, T., Lee, S. and Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, in “PCR Protocols: a Guide to Methods and Applications” (Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J. Eds.) pp. 315–322. Acad. Press, Inc. San Diego.Google Scholar
  39. Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingey, S.V. (1991) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nuc. Acid Res. 18, 6531–6535.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Brian W. Bainbridge
    • 1
  1. 1.Microbiology Group, Life Sciences DivisionKings College LondonLondonUK

Personalised recommendations