Physical Karyotyping: Genetic and Taxonomic Applications in Aspergilli

  • Klaas Swart
  • Alphons J. M. Debets
  • Edu F. Holub
  • Cees J. Bos
  • Rolf F. Hoekstra
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 69)

Abstract

The karyotype is often used in genetics, either to characterise an individual as a member of a distinct species or to investigate chromosome recombination and segregation in crosses or in somatic cell division. A cytogenetic karyotype has been characterised in several fungi (see e.g. Fincham et al., 1979). Among those is Aspergillus nidulans in which 8 chromosomes have been recognised (Elliott, 1960), which compared quite well to the 8 linkage groups defined in genetic analyses. However, the morphology of the different chromosomes was not sufficiently different to study chromosome behaviour or anomalies and this approach was not continued. An additional drawback is that individual chromosomes could only be demonstrated in meiotic cells and therefore this method is not applicable to imperfect fungi.

Keywords

Linkage Group Neurospora Crassa Aspergillus Nidulans rDNA Cluster Chromosome Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brody, H. and Carbon, J. (1989) Electrophoretic karyotype of Aspergillus nidulans. Proc. Natl. Acad. Sci. USA. 86, 6260–6263.PubMedCrossRefGoogle Scholar
  2. Brody, H., Griffith, J., Cuticchia, A.J., Arnold, J. and Timberlake, W.E. (1991) Chromosome-specific recombinant DNA libraries from the fungus Aspergillus nidulans. Nucleic Acids Res. 19, 3105–3109.PubMedCrossRefGoogle Scholar
  3. Carle, G.F. and Olson, M.V. (1984) Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis. Nucl. Acids. Res. 12, 5647–5664.PubMedCrossRefGoogle Scholar
  4. Chu, G., Volrath, D. and Davis, R.W. (1986) Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234, 1582–1585.PubMedCrossRefGoogle Scholar
  5. Debets, A.J.M. and Bos, C.J. (1986) Isolation of small protoplasts from Aspergillus niger. Fungal Genetics Newsletter 33, 24.Google Scholar
  6. Debets, A.J.M., Swart, K. and Bos, C.J. (1990a) Genetic analysis of Aspergillus niger: Isolation of chlorate resistance mutants, their use in mitotic mapping and evidence for an eighth linkage group. Mol. Gen. Genet. 221, 453–458.PubMedCrossRefGoogle Scholar
  7. Debets, A.J.M., Holub, E.F., Swart, K., van den Broek, H.W.J. and Bos, C.J. (1990b) An electrophoretic karyotype of Aspergillus niger. Mol. Gen. Genet. 224, 264–268.PubMedCrossRefGoogle Scholar
  8. Debets, F., Swart, K., Hoekstra, R.F. and Bos, C.J. (1993) Genetic maps of eight linkage groups of Aspergillus niger based on mitotic mapping. Curr. Genet. 23, 47–53.PubMedCrossRefGoogle Scholar
  9. Ehinger, A., Denison, S.H. and May, G.S. (1990) Sequence, organisation and expression of the core histone genes of Aspergillus nidulans. Mol. Gen. Genet. 222, 416–424.PubMedCrossRefGoogle Scholar
  10. Elliott, C.G. (1960) The cytology of Aspergillus nidulans. Genet.Res., Camb. 1, 462–476.CrossRefGoogle Scholar
  11. Fincham, J.R.S., Day, P.R. and Radford, A. (1979) “Fungal Genetics”, pp 34–47. Blackwell, Oxford.Google Scholar
  12. Keller, N., Cleveland, T.E. and Bhatnagar, D. (1992) Variable electrophoretic karyotypes of members of Aspergillus section. Flavi. Curr Genet. 21, 371–375.CrossRefGoogle Scholar
  13. Megnegneau, B., Debets, F. and Hoekstra R.F. (1993) Genetic variability and relatedness in the complex group of black Aspergilli based on random amplification of polymorphic DNA. Curr. Genet. 23, 323–329.PubMedCrossRefGoogle Scholar
  14. Montenegro, E., Fierro, F., Fernandes, F.J., Gutierres, S. and Martin, J.F. (1992). Resolution of chromosomes III and VI of Aspergillus nidulans by pulsed-field gel electrophoresis shows that the penicillin biosynthetic pathway genes pcbAB, pcbC, and penDE are clustered on chromosome VI (3.0 megabases). J. Bacteriol. 174, 7063–7067.PubMedGoogle Scholar
  15. Orbach, M.J., Vollrath, D., Davis, R.W. and Yanovski, C. (1988) An electrophoretic karyotype of Neurospora crassa. Mol. Cell. Biol. 8, 1469–1473.PubMedGoogle Scholar
  16. Russel, P.J., Petersen, R.C. and Wagner, S. (1988) Ribosomal DNA inheritance and recombination in Neurospora crassa. Mol. Gen. Genet. 211, 541–544.CrossRefGoogle Scholar
  17. Schwarts, D.C. and Cantor, C.R. (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37, 67–75.CrossRefGoogle Scholar
  18. Schwartz, D.C., Saffran, W., Welsh, J., Haas, R., Goldenberg, M. and Cantor, C.R. (1982) New techniques for purifying large DNAs and studying their properties and packaging. Cold Spring Harbor Symp. Quant. Biol. 47, 189–195.CrossRefGoogle Scholar
  19. Skinner, D.Z., Budde, A.D. and Leong, S.A. (1991) Molecular Karyotype Analysis of Fungi, in “More Gene Manipulations in Fungi” (Bennett, J.W., and Lasure, L.L., Ed) pp 86–103. Academic Press, San Diego.CrossRefGoogle Scholar
  20. Verdoes, J.C., Punt, P.J., Schrickx, J.M., van Verseveld, H.W., Stouthamer, A.H. and van den Hondel, CA.M.J.J. (1993) Glucoamylase overexpression in Aspergillus niger: molecular genetic analysis of strains containing multiple copies of the glaA gene. Transgenic Res. 2, 84–92.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Klaas Swart
    • 1
  • Alphons J. M. Debets
    • 1
  • Edu F. Holub
    • 1
  • Cees J. Bos
    • 1
  • Rolf F. Hoekstra
    • 1
  1. 1.Department of GeneticsAgricultural University WageningenWageningenThe Netherlands

Personalised recommendations