Molecular Genetics of the bimB and bimD Genes of Aspergillus Nidulans, Two Genes Required for Mitosis

  • Gregory S. May
  • Steven H. Denison
  • Cydne L. Holt
  • Carol A. McGoldrick
  • Paul Anaya
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 69)


Advances in understanding how cells duplicate and segregate their constituents through the cell cycle have been greatly facilitated by the genetic analysis of these processes in microbial eukaryotic organisms. The most notable of these organisms are the yeasts Saccaharomyces cerevisiae and Schizosaccharomyces pombe and the filamentous fungus Aspergillus nidulans. Much of this work has been directed towards understanding the regulators of major transition points in the cell cycle such as the transitions from Gl to S-phase and G2 to mitosis. For reviews of this literature the reader is referred to the following references: Doonan; 1992; Hartwell and Weinert, 1989; Murray, 1992. The advances made in A. nidulans were made possible by the isolation of a collection of heat sensitive (hs) mutants (Morris, 1976). This collection of hs mutants contained a class of mutations that altered the cell’s ability to traverse the cell cycle at restrictive temperature and in some cases resulted in a block in mitosis. Those mutations that resulted in a block in mitosis were designated bim and it is the bim genes that will be discussed here in some detail.


Aspergillus Nidulans Transcriptional Unit Restrictive Temperature Permissive Temperature Kinetochore Microtubule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baum, P., Yip, C., Goetsch, L. and Byers, B. (1988) A yeast gene essential for regulation of spindle pole duplication. Mol. Cell Biol. 8, 5386–5397.PubMedGoogle Scholar
  2. Bergen, L. G., Upshall, A., and Morris, N. R. (1984) S-phase, G2, and nuclear division mutants of Aspergillus nidulans. J. Bact. 159, 114–119.PubMedGoogle Scholar
  3. Bischoff, J. R., Casso, D., and Beach, D. (1992) Human p53 inhibits growth in Schizosaccharomyces pombe. Mol. Cell. Biol. 12, 1405–1411.PubMedGoogle Scholar
  4. Brody, H., Griffith, J. Cuticchia, A. J., Arnold, J., and Timberlake, W. E. (1991) Chromosome-specific recombinant DNA libraries from the fungus Aspergillus nidulans. Nucl. Acids Res. 19, 3105–3109.PubMedCrossRefGoogle Scholar
  5. Cabrai, F.R. (1983). Isolation of Chinese hamster ovary cell mutants requiring the continuous presence of taxol for cell division. J. Cell Biol. 97, 22–29.CrossRefGoogle Scholar
  6. Cai, M., and Davis, R. W. (1990) Yeast centromere binding protein CBF1, of the Helix-Loop-Helix protein family, is required for chromosome stability and methionine prototrophy. Cell 61, 437–446.PubMedCrossRefGoogle Scholar
  7. Doonan, J. H., and Morris, N. R. (1989) The bimG gene of Aspergillus nidulans, required for completion of anaphase, encodes a homolog of mammalian phosphoprotein phosphatase 1. Cell 57, 987–996.PubMedCrossRefGoogle Scholar
  8. Doonan, J.H., (1992) Cell division in Aspergillus. J. Cell Sci. 103, 599–611.PubMedGoogle Scholar
  9. Dustin, P. (1984) in “Microtubules” pp. 10–13, Springer-Verlag, New York.CrossRefGoogle Scholar
  10. Engle, D.B., Osmani, S. A., Osmani, A. H., Rosborough, S., Xiang, X., and Morris N. R. (1990) A negative regulator of mitosis in Aspergillus is putative membrane spanning protein. J. Biol. Chem. 265, 16132–16137.PubMedGoogle Scholar
  11. Enos, A. P., and Morris, N. R. (1990) Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans. Cell 60, 1019–1027.PubMedCrossRefGoogle Scholar
  12. Hartwell, L., and Weinert, T. A. (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629–634.PubMedCrossRefGoogle Scholar
  13. Hynes, M. J., Corrick, C. M., and King, J. A. (1983) Isolation of genomic clones containing the amdS gene of Aspergillus nidulans and their use in the analysis of structural and regulatory mutations. Mol. Cell. Biol. 3, 1430–1439.PubMedGoogle Scholar
  14. Käfer, E., and Mayor, O. (1986) Genetic analysis of DNA repair in Aspergillus: evidence for different types of MMS-sensitive hyperrec mutants. Mut. Res. 161, 119–134.CrossRefGoogle Scholar
  15. Kunkel, W. and Hadrich, H. (1977). Ultrastrukturelle Untersuchungen zur antimitotischen aktivitat von methylbenzimidazol-2-ylcarbamat (MBC) und seinen einfluss auf die replikation des kern-assoziierten organells (“centriolar plaque”, “MTOC”, “KCE”) bei Aspergillus nidulans. Protoplasma 92, 311–323.PubMedCrossRefGoogle Scholar
  16. May, G. S., McGoldrick, C. A., Holt, C. L., and Denison, S. H. (1992) The bimB3 mutation of Aspergillus nidulans uncouples DNA replication from the completion of mitosis. J. Biol. Chem. 267, 15737–15743.PubMedGoogle Scholar
  17. McGrew, J. T., Goetsch, L., Byers, B., and Baum, P. (1992) Requirement for ESP1 in the nuclear division of Saccharomyces cerevisiae. Mol. Biol. Cell 3, 1443–1454.PubMedGoogle Scholar
  18. Mirabito, P. M. and Morris, N. R. (1993) BIMA, a TPR-containing protein required for mitosis, localizes to the spindle pole body in Aspergillus nidulans. J. Cell Biol. 120, 959–968.PubMedCrossRefGoogle Scholar
  19. Morris, N. R. (1976) Mitotic mutants of Aspergillus nidulans. Genet. Res. 26, 237–254.CrossRefGoogle Scholar
  20. Murray, A. W. (1992) Creative blocks: Cell cycle checkpoints and feed back controls. Nature 359, 599–604.PubMedCrossRefGoogle Scholar
  21. Oakley, B. R., 1981, “Mitosis and Cytokinesis”. Academic Press Inc. NY, NY, 181–196.CrossRefGoogle Scholar
  22. Oakley, B.R., Oakley, C.E., Yoon, Y., and Jung, M.K. (1990). g-tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans. Cell 61, 1289–1301.PubMedCrossRefGoogle Scholar
  23. O’Donnell, K. L., Osmani, A. H., Osmani, S. A., and Morris, N. R. (1991) bimA encodes a member of the tetratricopeptide repeat family of proteins and is required for the completion of mitosis in Aspergillus nidulans. J. Cell Sci. 99, 711–719.PubMedGoogle Scholar
  24. Osmani, S. A., Pu, R. T., and Morris, R. N. (1988) Mitotic induction and maintenance by overexpression of a G2-specific gene that encodes a potential protein kinase. Cell 53, 237–244.PubMedCrossRefGoogle Scholar
  25. Sebastian, J., and Sancar, G. B. (1991) A damage-responsive DNA binding protein regulates transcription of the yeast DNA repair gene PHR1. Proc. Natl. Acad. Sci. U.S.A. 88, 11251–11255.PubMedCrossRefGoogle Scholar
  26. Uzawa, S., Samejima, I., Hirano, T., Tanaka, K. and Yanagida, M. (1990) The fission yeast cut1 + gene regulates spindle pole body duplication and has homology to the budding yeast ESP1 gene. Cell 62, 913–25.PubMedCrossRefGoogle Scholar
  27. White, J., Brou, C., Wu, J., Lutz, Y., Moncollin, V., and Chambon, P. (1992) The acidic transcriptional activator GAL-VP16 acts on preformed template-committed complexes. EMBO J. 11, 2229–2240.PubMedGoogle Scholar
  28. Zhao, P., and Käfer, E. (1992) Effects of Mutagen-sensitive mus mutations on spontaneous mitotic recombination in Aspergillus. Genetics 130, 717–728.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Gregory S. May
    • 1
  • Steven H. Denison
    • 1
  • Cydne L. Holt
    • 1
  • Carol A. McGoldrick
    • 1
  • Paul Anaya
    • 1
  1. 1.Department of Cell BiologyBaylor College of MedicineHoustonUSA

Personalised recommendations