Adhesin-Receptor Interactions by Haemophilus Influenzae and Other Bacteria from the HAP Group

  • L. van Alphen


Many microbes in nature can thrive in a variety of ecological niches, whereas others are restricted to specific microenvironments. Haemophilus influenzae f.i. is only able to colonize and infect humans (Turk and May, 1967). Host range, tissue tropism and target cell specificity demonstrated by a particular microbe are determined at least in part by a stereochemical fit between microbial adhesins and complementary receptor architectures on host surfaces. This is a dynamic process which is meant to direct the microbe to its final target. This target may be a niche on the mucosa doing carriership, inflamed tissue after bacterial action on the epithelium, or the circulation when the bacteria have passed the epithelium. Also during systemic spread, bacteria have preference for certain tissues. In patients with meningitis H. influenzae is able to bind to and pass the blood brain barrier on its way to the cerebrospinal fluid and meningi (Moxon, 1992). Each step in these processes requires specific interactions between bacteria and host cells. Regulation of the synthesis of the bacterial adhesins allows the bacteria to bind to receptors available, thereby directing the bacteria to the next target tissue.


Haemophilus Influenzae Mucociliary Clearance Tissue Tropism Organ Culture Model Nasopharyngeal Epithelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, K.B., Henley, D.D. and Davis. G.S., 1986, Bacteria associated with obstructive pulmonary disease elaborate extracellular products that stimulate mucin secretion by explants of guinea pig airways. Am. J. Pathol. 125: 501–514.PubMedGoogle Scholar
  2. Armes, L.G. and Forney, L.J. 1990, The complete primary structure of pilin from Haemophilus influenzae type b strain Eagan. J. Protein Chemistry 9: 45–52.CrossRefGoogle Scholar
  3. Barenkamp, S.J. and Bodor, F.F., 1990. Development of serum bactericidal activity following nontypable Haemophilus influenzae acute otitis media. Pediatr. Infect. Dis. J. 9: 333–339.CrossRefGoogle Scholar
  4. Barenkamp, S.J. and Leininger. E., 1992, Cloning, expression, and DNA sequence analysis of genes encoding nontypable Haemophilus influenzae high-molecular-weight surface-exposed proteins related to filamentous haemagglutinin of Bordetella pertussis. Infect. Immun. 60: 1302–1313.Google Scholar
  5. Belanger, M. Dubreuil, D. and Jaques. M., 1994, Proteins found within respiratory tract secretions hind lipopolysaccharides of Actinobacillus pleuropneumoniae. Infect. Immun. 62: 868–873.Google Scholar
  6. Belanger, M., Dubreuil, D., Harel, J. Girard, C. and Jaques, M., 1990. Role of lipopolysaccharides in adherence of Actinobacillus pleuropneumoniae to porcine tracheal rings. Infect. Immun. 58: 3523–3530.Google Scholar
  7. Brenner, D.J., Mayer, L.W., Carlone. G.M., Harrison, L.H., Bibb, W.F., de Cunto Brandileone, M.C., Sottnek, F.O., Irino, K., Reeves, M.W., Swenson, J.M., Birkness, K.A., Weyant, R.S., Berkley, S.F., Woods. T.C., Steigerwalt, A,G., Grimont, P.A.D., McKinney, R.M., Fleming, D.W., Gheesling, L.L., Cooksey, R.C., Arko, R.J., Broome, C.V„ and The Brazilian Purpuric Fever Study Group, 1988, Biochemical, genetic, and epidemiologic characterization of Haemophilus influenzae biogroup aegyptius (Haemophilus aegyptius; strains associated with Brazilian purpuric fever. J. Clin. Microbial.26: 1524–1534.Google Scholar
  8. Brinton Jr.,C.C., Carter, M.J., Derber, D.B., Kar, S. Kramarik, J.A., To, A.C., To. S.C., Wood, S.W., 1989, Design and development of pilus vaccines for Haemophilus influenzae diseases. Pediatr. Infect. Dis. J.8: S54 - S61.CrossRefGoogle Scholar
  9. Coleman. T., Grass. S. and Munson Jr., R., 1991, Molecular cloning. expression, and sequence of the pilin gene from nontypable Haemophilus influenzae M37. infect. Immun. 59: 1716–1722.Google Scholar
  10. Dodson, K.W., Jacob-Dubuisson, F., Striker, R.T. and Hultgren, S.J., 1993, Outer membrane PapC molecular usher discriminately recognizes periplasmic chaperone-pilus subunit complexes. Proc. Natl. Acad. Sci USA 90: 3670–3674.PubMedCrossRefGoogle Scholar
  11. Forney, L.J., Mans, C.F., Bektesh, S.L. and Gilsdorf, J.R., 1991. Comparison and analysis of the nucleotide sequences of pilin genes from Haemophilus influenzae type b strains Eagan and M43. Infect. Immun.59: 1991–1996.PubMedGoogle Scholar
  12. Gilsdorf, J.R., McCrea, K. and Forney, L., 1990, Conserved and nonconserved epitopes among Haemophilus influenzae type b pili. Infect. Innnun.58: 2252–2257.Google Scholar
  13. Guerina, N.G., Langermann, S. Clegg, H.W., Kessler, T.W., Goldmann, D.A. and Gilsdorf, J.R., 1982, Adherence of piliated Haemophilus influenzae type h to human oropharyngeal cells. J. Infect. Dis.146: 564.Google Scholar
  14. Holmgren, A., Kuehn. M.J., Branden, C.-I. and Hultgren, S.J., 1992, Conserved immunoglobulin-like features in a family of periplasmic pilus chaperones in bacteria. EMBO J.11: 1617–1622.Google Scholar
  15. Hultgren, S.J., Abraham, S. Caparon, M., Falk, P. St. Genre iii, J.W. and Normark, S., 1993, Pilus and nonpilus bacterial adhesins: assembly and function in cell recognition. Cell 73: 887–901.PubMedCrossRefGoogle Scholar
  16. Inzana, T.J. 1991, Virulence properties of Actinobacillus pleuropneunnoniae. Microb. Pathog. 11: 305–316.CrossRefGoogle Scholar
  17. Jaques, M., Belanger, M., Roy. G. and Foiry, B., 1991, Adherence of Actinobacillus pleuropneumoniae to porcine tracheal epithelial cells and frozen lung sections. Vet. Microbiol.27: 133–143.Google Scholar
  18. Kahn, M.E. and Gromkova, R. 1981. Occurrence of pili on and adhesive properties of Haemophilus parainfluenzae. J. Bacterial. 145: 1075–1078.Google Scholar
  19. Kar, S., To, S.C.-M., and Brinton Jr., C.C., 1990. Cloning and expression in E. coli of LKP pilus genes from a nontypable Haemophilus influenzae strain. Infect. !minim.58: 903–908.Google Scholar
  20. Karlsson, K.-A. J. Angstrom. J. Bergstrom, and Lanne, B., 1992, Microbial interactions with animal cell surface carbohydrates. APMIS Suppl. 100:71–83.Google Scholar
  21. Karlsson, K.-A., 1989, Animal glycosphingolipids as membrane attachment sites for bacteria. Ann. Rev. Biochem.58: 309–350.PubMedCrossRefGoogle Scholar
  22. Lai, C.H., Bloomquist, C.G. and Liljemark, W.F., 1990, Purification and characterization of an outer membrane protein adhesin from Haemophilus parainfluenzae HP-28. Infect. Immun.58: 3833–3839.PubMedGoogle Scholar
  23. Langermann, S. and Wright. A., 1990, Molecular analysis of the Haemophilus influenzae type b pilin gene. Mol. Microbiol.4: 221–230.PubMedCrossRefGoogle Scholar
  24. Liljemark, W.F., Bloomquist. C.G. and Lai, C.H., 1992, Clustering of an outer membrane adhesin of Haemophilus parainfluenzae. Infect. Immun.60: 687–689.Google Scholar
  25. Loeb, M.R., Connor, E. and Penney. P.A., 1988, A comparison of the adherence of fimbriated and nonfimbriated Haemophilus influenzae type h to human adenoids in organ culture. Infect. Immun.56: 484–489.PubMedGoogle Scholar
  26. Mason Jr, E.O., Kaplan, S.L., Wiedermann. B.L., Norrod. E.P. and Stenback.W.A., 1985, Frequency and properties of naturally occurring adherent piliated strains of Haemophilus influenzae type b. infect. Immun. 49: 98–103.Google Scholar
  27. Mayer, L.W., Bibb, W.F. and Birkness, K.A., 1989, Distinguishing clonal characteristics of the Brazilian purpuric fever-producing strain. Pediatr. Infect. Dis. J.8: 241–243.PubMedGoogle Scholar
  28. Meyer, D.H. and Fives-Taylor, P.M. 1994, Characteristics of adherence of Actinobacillus actinomvicetemcomitans to epithelial cells. Infect. Immun.62: 928–935.PubMedGoogle Scholar
  29. Moxon, E.R., 1992, Molecular basis of invasive Haemophilia influen:ae type h disease. Infect Dis 165: S77 - S81.CrossRefGoogle Scholar
  30. Moxon, E.R., 1986. The carrier state: Haemophilus influenzae. J. Antimicrob. Chemother. 18:17–24. Munch. S. Grund, S. and Kruger, M. 1992, Fimbriae and membranes on Haemophilus parasols. Zentralbl. Veterinarmed. B. 39: 59–64.Google Scholar
  31. Murphy. T.F. and Sethi, S., 1992. Bacterial infection in chronic obstructive pulmonary disease. Am. Rev. Respir. Dis.146: 1067–1083.CrossRefGoogle Scholar
  32. Noel, G.J., Barenkamp, S.J., St. Genre H. J.W., Haining, W.N. and Mosser, D.M., 1994, Highmolecular-weight surface-exposed proteins of Haemophilus influenzae mediate binding to macrophages, J. Infect. Dis.169:425–429.Google Scholar
  33. Pichichero, M.E., 1984, Adherence of Haemophilus influenzae to human buccal and pharyngeal epithelial cells: relationship to piliation. J. Med. Microbiol.18: 107–116.PubMedCrossRefGoogle Scholar
  34. Pichichero, M.E., Anderson, P., Loeb, M. and Smith, D.H., 1982, Do pili play a role in pathogenicity of Haemophilus influen:ae type b? Lancet ii:960–962.Google Scholar
  35. Pijoan, C. and Trigo. F. 1990, Bacterial adhesion to mucosal surfaces with special reference to Pasteurella multocida isolates from atrophic rhinilis. Can. J. Vet. Res.54: S16 - S21.PubMedGoogle Scholar
  36. Poole, J. and van Alphen, L., 1988, Haemophilus influen:ae receptor and the AnWj antigen. Transfusion 28: 289.Google Scholar
  37. Read, R.C., Rutman, A.A., Jeffery, P.K., Lund, V.J., Brain, A.P.R., Moxon, E.R., Cole, P.J. and Wilson. R., 1992, Interaction of capsulate Haemophilus influen:ae with human airway mucosa in vitro. Infect. Immun.60: 3244–3252.PubMedGoogle Scholar
  38. Read, R.C., Wilson, R., Rutman, A., Lund. V. Todd, H.C., Brain, A.P.R., Jeffrey, P.K. and Cole. P.J., 1991, Interaction of nontypable Haemophilus influen:ae with human respiratory mucosa in vitro. J. Infect. Dis.163: 549–558.PubMedCrossRefGoogle Scholar
  39. Smith, A.L., Forney, L. and Chanyangam. M. GenBank accession number X66606, unpublished.Google Scholar
  40. St. Gerne IIi, J.W. and Falkow, S., 1991, Loss of capsule expression by Haemophilus influen:ae type b results in enhanced adherence to and invasion of human cells. Infect. Immun.59: 1325–1333.Google Scholar
  41. St. Gerne IiI, J.W., Falkow. S. and Bärenkamp. S.J., 1993. High-molecular-weight proteins of nontypable Haemophilus influen:ae mediate attachment to human epithelial cells. Proc. Nat/. Acad. Sci. USA 90:2875–2879.Google Scholar
  42. Sterk, L.T.M., van Alphen, L., Geelen-van den Brock, L., Houthoff, H.J. and Dankert, J., 1991, Differential binding of Haemophilus influenzae to human tissues by fimbriae. J. Med. Microbial.35: 129–138.Google Scholar
  43. Stromberg, N. Nyholm, P.-G. Pascher. T. and Normark, S. 1991. Saccharide orientation at the cell surface affects glycolipid receptor function. Proc. Natl. Acad. Sci. USA 88: 9340–9344.PubMedCrossRefGoogle Scholar
  44. Turk, D.C. and May, J.R., 1967, laemophilus influen:ae, its clinical significance. The English University Press Ltd, London.Google Scholar
  45. van Alphen, L. Geelen-van den Brock, L. Blaas, L., van Ham. M. and Dankert. J. , 1991, Blocking of fimbriae mediated adherence of Haemophilus influen:ae by sialyl gangliosides. Infect. Immun.59: 4473–4477.Google Scholar
  46. van Alphen, L., Dankert, J. and Jansen, H.M. Virulence factors in the colonization and persistence of bacteria in the airways. Am. Rev. Resp. press.Google Scholar
  47. van Alphen, L., Levene. C., Geelen-van den Brock, L., Poole, J., Bennett, M. and Dankert, J., 1990, Combined inheritance of the epithelial and erythrocyte receptor for Haemophilus influenzae. Infect. Immun.58: 3807–3809.Google Scholar
  48. van Alphen, L., Poole. J. and Overbeeke. M., 1986. The Anton blood group antigen is the erythrocyte receptor for Haemophilus influen:ae. FEMS Microbial. Lett.37: 69–71.Google Scholar
  49. van Alphen, L., Poole, J., Geelen, L. and Zanen. H.C., 1987, The erythrocyte and epithelial cell receptor for Haemophilus influenzae are expressed independently. Infect. Immun.55: 2355–2358.PubMedGoogle Scholar
  50. van Alphen, L. van den Berghe. N. and Geelen- van den Brock, L., 1988, Interaction of Haemophilus influenzae with human erythrocytes and oropharyngeal epithelial cells is mediated by a common fimbrial epitope. Infect. Immun.56: 1800–1806.PubMedGoogle Scholar
  51. van Ham, S.M., Mooi, F.R., Sindhunata, M.G., Maris. W.R. and van Alphen, L., 1989, Cloning and expression in E. coli of Haemophilus influen:ae fimbrial genes establishes adherence to oropharyngeal epithelial cells. EMBO J.11: 3535–3540.Google Scholar
  52. van Ham, S.M., van Alphen, L., Mooi, F.R. and van Pullen, J.P.M., 1993, Fimbrial phase variation in Haemophilus influen:ae is trancriptionally regulated by changes in the HifA promotor region. Cell 73: 1187–1196.PubMedCrossRefGoogle Scholar
  53. Watson, W.J., Gilsdorf, J.R., Tucci, M.A., McCrea, K.W. Forney, L.J. and Marrs, C.F., 1994. Identification of a gene essential for piliation in Haemophilus influen:ae type b with homology to the pilus assembly platform genes of Gram-negative bacteria. Infect. Immun.62: 468–475.PubMedGoogle Scholar
  54. Whitney, A.M. and Farley, M.M., 1993, Cloning and sequence analysis of the structural pilin gene of Brazilian purpuric fever-associated Haemophilus influenzae biogroup aegyptius. infect. Immun. 61: 1559–1562.Google Scholar
  55. Wilson. R. Read, R. and Cole. P., 1992, interaction of Haemophilus influenzae with mucus, cilia, and respiratory epithelium. J. Infect. Dis.16.5:5100-S102.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • L. van Alphen
    • 1
  1. 1.Department of Medical Microbiology Academic Medical Center, room 162LFaculty of MedicineAmsterdamThe Netherlands

Personalised recommendations