Genetic Manipulations of Members of the Family Pasteurellaceae

  • J. Frey
  • J. I. MacInnes

Abstract

The family Pasteurellaceae is comprised of three genera: Haemophilus, Actinobacillus, and Pasteurella (HAP). These bacteria cause important diseases in humans and animals and are of great medical and economical importance. Recently, the HAP bacteria have been the subject of intensive research in the fields of molecular mechanisms of pathogenicity, immunogenicity, and vaccine development. A considerable amount of work has been done in the molecular analysis of several virulence components including capsule, lipopolysaccharide, outer membrane proteins, and exotoxins. While cloning and expression of genes from the HAP bacteria in established hosts like E. coli K12 strains appears to be easy, very little work has been described on the genetic engineering of the HAP bacteria themselves.

Keywords

Antibiotic Resistance Gene Shuttle Vector Broad Host Range Suicide Vector Insertional Inactivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albritton, W.L., Setlow, J.K., Thomas, M., Sottnek, F. and Steigerwalt, A.G., 1984, Heterospecific transformation in the genus Haemophilus, Mol. Gen. Genet. 193:358–363.Google Scholar
  2. Azad, A.K., Coote, J.G. and Parton, R. 1992. Distinct plasmid profiles of Pasteurella haemolytica serotypes and the characterization and amplification in Escherichia coli of ampicillin-resistance plasmids encoding ROB-1 13-lactamase„/. Gen. Microbial. 138: 1185–1196.Google Scholar
  3. Azad, A.K., Coote, J.G. and Parton. R., 1994. Construction of conjugative shuttle and suicide vectors for Pasteurella haemolytica and P. inultocida, Gene 145: 81–85.PubMedCrossRefGoogle Scholar
  4. Beck, E., Ludwig. G., Auerswald, E.A., Reiss, B. and Schaller, H., 1982, Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tas, Gene 19: 327–336.PubMedCrossRefGoogle Scholar
  5. Briggs, R.E., Tatum, F.M., Casey, T.A., Frank, G.H., 1994. Characterization of a restriction endonuclease, PhaI, from Pasteurella haemolytica serotype A 1 and protection of heterologous DNA by a cloned Phal methyltransferase gene. Appl. Enriron.Microbiol. 60: 2006–2010.Google Scholar
  6. Chang. Y-F., Ma, D.P., Bai, H.Q., Young, R., Struck. D.K., Shin, S.J. and Lein, D.H., 1992, Characterization of plasmids with antimicrobial resistant genes in Pasteurella haemolytica Al, DNA Seq. 3: 89–97.PubMedGoogle Scholar
  7. Chang, Y-F. Shi, J., Shin, Si. and Lein, D.H., 1992. Sequence analysis of the ROB-1 13-lactamase gene from Actinobacillus pleuropneumoniae, Vet. Microhiol. 32: 319–325.CrossRefGoogle Scholar
  8. Craig, F.F., Coote, J.G., Parton, R., Freer, J.H. and Gilmour, N.J., 1989, A plasmid which can be transferred between Escherichia coli and Pasteurella haemolytica by electroporation and conjugation, J. Gen. Microbiol. 135: 2885–2890.PubMedGoogle Scholar
  9. Frey, J., 1992. Construction of a broad host range shuttle vector for gene cloning and expression in Actinobacillus pleuropneumoniae and other Pasteurellaceae, Res. Microhiol. 143: 263–269.CrossRefGoogle Scholar
  10. Gawron-Burke. C., and Clewell, D.B., 1982. A transposon in Streptococcus faecalis with fertility properties, Nature 300: 281–284.PubMedCrossRefGoogle Scholar
  11. Gromkova, R.C., Rowji, P.B., and Koornhof, H.J., 1989, Induction of competence in nonencapsulated and encapsulated strains of Haemophilus influen_ae, Curr. Microhiol. 19: 241–245.CrossRefGoogle Scholar
  12. Hedges, R.W. and Datta, N„ 1971, fi R factors giving chloramphenicol resistance, Nature 234: 220–222.Google Scholar
  13. Herrero, M. de Lorenzo. V. and Timmis, K.N., 1990, Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J. Bacterial. 172: 6557–6567.Google Scholar
  14. Hirsch, P.R., Wang, C.L. and Woodward, M.J., 1986, Construction of a Tits derivative determining resistance to gentamycin and spectinomycin using a fragment cloned from R-1033, Gene 48: 203–209.PubMedCrossRefGoogle Scholar
  15. Holland. J., Towner, K. J., and Williams, P., 1992, Tn9/6 insertion mutagenesis in Escherichia coli and Haemophilus influenzae type b following conjugative transfer J. Gen. Microbiol. 138: 509–515.PubMedCrossRefGoogle Scholar
  16. Jansen, R., Briaire, J. Smith, H.E., Dom, P., Haesebrouck, F., Kamp, E.M., Gielkens, A.L.J. and Smits, M.A., 1995, Knockout mutants of Actinobacillus pleuropneumoniae serotype 1 that are devoid of RTX toxins do not activate or kill porcine neutrophils, Infect. Immun. 63: 27–37.PubMedGoogle Scholar
  17. Lalonde. G. and (Manley. P.D., 1989. Development of a shuttle vector and a conjugative transfer system for Actinobacillus pleuropneumoniae, Gene 85: 243–246.PubMedCrossRefGoogle Scholar
  18. Livrelli, V.O., Darfeuille-Richaud, A. Rich, C.D., Joly, B.H. and Martel. J.-L., 1988, Genetic determinant of the ROB-1 (3-lactamase in bovine and porcine Pasteurella strains. Antimicroh. Agents Chemother. 32: 1282–1284.CrossRefGoogle Scholar
  19. Maguin, E., Duwat, P. Hege, T., Ehrlich, D. and Gruss. A. 1992, New thermosensitive plasmid for gram positive bacteria. J. Bacterial. 174: 5633–5638.Google Scholar
  20. Oka, A., Sugisaki, H. and Takanami, M. 1981, Nucleotide sequence of the kanamycin resistance transposon Tn903,.I. Mol. Biol. 147: 217–226.CrossRefGoogle Scholar
  21. Remer, D., Frey, J., Jansen, R. and Inzana, T.J., 1993, Molecular investigation of the role of ApxI and ApxII in the virulence of Actinobacillus pleuropneumoniae serotype 5, 74th Annual Meeting of the Conference of Research Workers in Animal Disease, Chicago, p. 44. Abs. #225.Google Scholar
  22. Sato. S., Takamatsu, N. Okahashi, N. Matsunoshita, N., Inoue, M., Takehare, T., and Koga. T., 1992, Construction of mutants of Actinobacillus acinetomvicetemcomitans defective in serotype b-specific polysaccharide antigen by insertion of transposon Tn916. J. Gen. Microbial., 138: 1203–1209.CrossRefGoogle Scholar
  23. Scholz, P. Haring, V. Wittmann-Liebold, B., Ashman, K., Bagdasarian. M. and Scherzinger. E., 1989, Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010, Gene 75: 271–288.Google Scholar
  24. Tascon, R.I., Rodriguez-Ferri, E.F., Gutierrez-Martin, C.B., Rodriguez-Barbosa, I. Berche, P. and Vazquez-Boland, J.A., 1993. Transposon mutagenesis in Actinobacillus pleuropneumoniae with a Tn10 derivative, J. Bacterial. 175: 5717–5722.Google Scholar
  25. Tascon, R.T., Vazquez-Boland, J.A., Gutierrez-Martin, C.B., Rodriguez-Barbosa, I., and Rodriguez-Ferri, E.F., 1994, The RTX haemolysins Apxt and Apxl1 are major virulence factors of the swine pathogen Actinobacillus pleuropneumoniae: evidence from mutational analysis. Mol. Microbiol. 14: 207–216.PubMedCrossRefGoogle Scholar
  26. Tatum, F.M., Briggs, R.E., and Halting, S.M., 1994. Molecular gene cloning and nucleotide sequencing and construction of an aroA mutant of Pasteurella haemolvtica serotype Al, Appl. Environ. Microbial. 60: 2011–2016.Google Scholar
  27. West, S.E.H., Romero, M-J.M., Regassa, L.B., Zielinski, N.A. and Welch. R.A., 1995.Construction of Actinobacillus pleuropneumoniae - Escherichia coli shuttle vectors: expression of antibiotic resistance genes. Gene (in press).Google Scholar
  28. Willson. P.J., Albritton. W.L., Slaney, L. and Setlow. J.K., 1989, Characterization of a multiple antibiotic resistance plasmid from Haemophilia d ucrevi, Antimicroh. Agents Chemother. 33: 1627–1630.CrossRefGoogle Scholar
  29. Willson. P.J., 1990, Haemophilus, Actinobacillus, Pasteurella: mechanisms of resistance and antibiotic therapy, Can. J. Vet. Res. 54 Suppl: S73–S77.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • J. Frey
    • 1
  • J. I. MacInnes
    • 2
  1. 1.Institute for Veterinary BacteriologyUniversity of BerneBerneSwitzerland
  2. 2.Department of Veterinary Microbiology & ImmunologyUniversity of GuelphGuelphCanada

Personalised recommendations