Pesticide Exposure and Re-Entry in Agriculture

  • Joop J. van Hemmen
  • Yvette G. C. van Golstein Brouwers
  • Derk H. Brouwer
Part of the NATO · Challenges of Modern Society book series (NATS, volume 19)


For risk evaluation one needs to know the toxicity of the compound and its uses, since the actual use pattern determines the level of exposure. This is the case for the mixing, loading and application of pesticides, as well as for re-entry exposure, i.e. exposure after application. For the present overview the emphasis is on the various aspects of the exposure of harvesters and other workers in a crop. The level of exposure caused by re-entry is determined by the amount available in the surroundings of the worker, i.e. the amount present in air (still available after application as vapour and/or aerosols, or available by evaporation from crop, soil, objects, or materials present), or brought into the air by the workers activities (e.g. resuspension of deposited residues) and the degree of contact of the worker with contaminated surfaces (mainly the crop itself). The resulting potential exposure, defined as the amount that reaches the worker from the environment by deposition, contact or inhalation, is very important for generic purposes. The potential exposure may be determined by the chemical properties of the pesticide but it is certainly determined by the physical parameters related to the type of crop, physical properties of the pesticide and the nature of the operations of the worker. The major advantage of the concept of potential exposure is given by the fact that the actual clothing of the worker has no influence on the potential exposure. This is, however, also its major disadvantage since for the assessment of systemic uptake of the pesticide through the skin, by inhalation or by swallowing, the actual exposure and the degree of absorption must be known. The actual skin exposure is defined as the amount that reaches the skin and becomes therefore available for absorption through the skin. For inhalation and oral exposure, the potential and actual exposure are (without respiratory protective equipment) generally much more similar than for dermal exposure.


Leaf Area Index Cholinesterase Inhibition Transfer Factor Pesticide Exposure Potential Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bates, J.A.R., 1990, The prediction of pesticide residues in crops by the optimum use of existing data, Pure Appl. Chem. 62: 337–350.CrossRefGoogle Scholar
  2. Brouwer, D.H., Brouwer, R., and Van Hemmen, J.J., 1990, Respiratory exposure to field strength dusts in greenhouses during application and re-entry, in: “Book of Abstracts Seventh International Congress of Pesticide Chemistry”, H. Frehse, E. Kessler-Schmitz and S. Conway, eds., Vol. III, p. 375, IUPAC, Hamburg, Germany.Google Scholar
  3. Brouwer, D.H., Brouwer, R., De Mik, G., Maas, C.L., and Van Hemmen, J.J., 19928, Pesticides in the cultivation of carnations in greenhouses: Part I–Exposure and concomitant health risk, Am. Ind. Hyg. Assoc. J. 53: 575–581.Google Scholar
  4. Brouwer, D.H., De Vreede, J.A.F., Ravensberg, J.C., Engel, R., and Van Hemmen, J.J., 1992d, Dissipation of aerosols from greenhouse air after application of pesticides using a low-volume technique. Implications for safe re-entry, Chemosphere 24: 1157–1169.Google Scholar
  5. Brouwer, R., Brouwer, D.H., Tijssen, S.C.H.A., and Van Hemmen, J.J., 1992h, Pesticides in the cultivation of carnations in greenhouses: Part II–Relationship between foliar residues and exposures, Am. Ind. Hyg. Assoc. J. 53: 582–587.Google Scholar
  6. Brouwer, R., Van Maarleveld, K., Ravensherg, L., Meuling, W., De Kort, W., and Van Hemmen, J.J., 1993, Skin contamination, airborne concentrations and urinary metabolite excretion of propoxur during harvesting of flowers in greenhouses, Am. J. Ind. Med. 24: 593–603.PubMedCrossRefGoogle Scholar
  7. Brouwer, R., Marquart, H., De Mik, G., and Van Hemmen, J.J., 1992`, Risk assessment of dermal exposure of greenhouse workers to pesticides after re-entry, Arch. Environ. Contam. Toxicol. 23: 273–280.Google Scholar
  8. Chester, G., 1993, Evaluation of worker exposure to, and absorption of, pesticides during occupational use and crop re-entry, Ann. Occup. Hyg. 37: 509–523.PubMedCrossRefGoogle Scholar
  9. Dong, M.H., Krieger, R.I., and Ross, J.H., 1992, Calculated reentry interval for table grape harvesters working in California vineyards treated with methomyl, Bull. Environ. Contam. Toxicol. 49: 708714.Google Scholar
  10. Dong, M.H., Saiz, S.C., Mehler, L.N., and Ross, J.H., 1991, Determination of crop-specific parameters used in foliar mass to area conversion: I. For selected varieties of grapes, Bull. Environ. Contam. Toxicol. 46: 542–549.PubMedCrossRefGoogle Scholar
  11. Ebeling, W., 1963, Analysis of the basic processes involved in the deposition, degradation, persistence and effectiveness of pesticides, Residue Rev. 3: 35–163.Google Scholar
  12. Fiserova-Bergerova, V., 1993, Relevance of occupational skin exposure, Paper presented during the workshop on Occupational Skin Exposure to Chemical Substances, First International Scientific Conference on Occupational Hygiene in Brussels, 1992, Ann. Occup. Hyg. 37: 673–685.PubMedCrossRefGoogle Scholar
  13. Goedicke, H.-J., 1987, Rückstände von Pflanzenschutzmitteln auf Pflanzenoberflächen als Quelle für Intoxikationen and Möglichkeiten der Expositionsnormierung, Z. ges. Hyg. 33: 339–342.Google Scholar
  14. Goedicke, H.-J., 1988’, Zum Rückstandsverhalten von Pflanzenschutzmitteln an Pflanzenoberflächen, Z. ges. Hyg. 34: 279–282.Google Scholar
  15. Goedicke, H.-J., 1988“, Zum Rückstandsverhalten von pirimiphos-methyl auf Tomaten, Blatt-and Bodenoberflächen im Gewächshaus, Nahrung 5: 475–480.Google Scholar
  16. Goedicke, H.-J., 1989, Exposition durch Rückstände auf Blattoberflächen nach Anwendung von phosphororganischen Insektiziden im intensiven Apfelanbau, Z. ges. Hyg. 35: 533–535.Google Scholar
  17. Goedicke, H.-J., Hermes, H., and Wagner, R., 1989, Exposition durch Rückstände auf Pflanzenoberflächen nach Anwendung von Pflanzenschutzmitteln im Gewächshaus, Z. ges. Hyg. 35: 531–533.Google Scholar
  18. Grandjean, P., 1990, “Skin Penetration. Hazardous Chemicals at Work”, Taylor & Francis, London, England.Google Scholar
  19. Gunther, F.A., Iwata, Y., Carman, G.E., and Smith, C.A., 1977, The citrus reentry problem: Research on its causes and effects, and approaches to its minimalization, Residue Rev. 67: 1–139.PubMedCrossRefGoogle Scholar
  20. Iwata, Y., Knaak, J.B., Spear, R.C., and Foster, R.J., 1977, Worker reentry into pesticide-treated crops I. Procedure for the determination of dislodgable pesticide residues on foliage, Bull. Environ. Contam. Toxicol. 18: 649–655.PubMedCrossRefGoogle Scholar
  21. Jauhiainen, A., Kangas, J., Laitinen, S., and Savolainen, K., 1992, Biological monitoring of workers exposed to mevinphos in greenhouses, Bull. Environ. Contam. Toxicol. 49: 37–43.PubMedCrossRefGoogle Scholar
  22. Kangas, J., Laitinen, S., Jauhiainen, A., and Savolainen, K., 1992, Exposure of Workers to Mevinphos in Greenhouses. Poster presented at a workshop on Occupational Skin Exposure to Chemical Substances of the First International Scientific Conference on Occupational Hygiene in Brussels.Google Scholar
  23. Kangas, J., Laitinen, S., Jauhiainen, A., and Savolainen, K., 1993, Exposure of sprayers and plant handlers to mevinphos in Finnish greenhouses, Am. Ind. Hyg. Assoc. J. 54: 150–157.PubMedCrossRefGoogle Scholar
  24. Krieger, R., Blewett, C., Edmiston, C., Fong, H., Gibbons, D., Meinders, D., O’Connell, L., Ross, J., Schneider, F., Spencer, J., and Thongsinthusak, T., 1990, Gauging pesticide exposure of handlers (mixer/loader/applicators) and harvesters in California agriculture, Med. Lay. 81: 474–479.Google Scholar
  25. Krieger, R.I., Ross, J.H., and Thongsinthusak, T., 1992, Assessing human exposure to pesticides, Rev. Environ. Contam. Toxicol. 129: 1–15.CrossRefGoogle Scholar
  26. Liesivuori, J., Lihkkonen, S., and Pirhonen, P., 1988, Re-entry intervals after pesticide application in greenhouses, Scand. J. Environ. Health 14, Suppl. 1: 35–36.Google Scholar
  27. Lindquist, R.K., Krueger, H.R., and Powell, C.C., 1987, Airborne and surface residues of permethrin after high-and low-volume applications in greenhouses, J. Environ. Sci. Health B22: 15–27.Google Scholar
  28. Löbel, H., and Schunk, W., 1982, Zur Exposition und Gesundheitsgefährdung der Werktätigen inGoogle Scholar
  29. Gewächshausern durch Rückstände cholinesterasehemmender Pflanzenschutzmittel, Z. ges. Hyg. 28:697–699.Google Scholar
  30. Maddy, K.T., Edmiston, S., and Richmond, D., 1990, Illnesses, injuries, and deaths from pesticide exposures in California 1949–1988, Rev. Environ. Contam. Toxicol. 114: 57–123.PubMedCrossRefGoogle Scholar
  31. Mitchell, M.F., Iyengar, S., and Curry, P., 1993, Re-entry exposure assessment, manuscript in preparation, Workplace Substances and Pesticides Division, Environmental Health Directorate, Health and Welfare Canada, Ottawa, Canada.Google Scholar
  32. Morse, D.L., Baker, E.L., and Landrigan, P.J., 1979, Cut flowers: A potential pesticide hazard, Am. J. Public Health 69: 53–56.PubMedCrossRefGoogle Scholar
  33. Nigg, H.N., 1980, Prediction of agricultural worker safety reentry times for organo-phosphate insecticides, Am. Ind. Hyg. Assoc. J. 41: 340–345.PubMedCrossRefGoogle Scholar
  34. Nigg, H.N., Stamper, J.H., and Queen, R.M., 1984, The development and use of a universal model to predict tree crop harvester pesticide exposure, Am. Ind. Hyg. Assoc. J. 45: 182–186.PubMedCrossRefGoogle Scholar
  35. Popendorf, W.J., 1985, Advances in the unified field model for reentry hazards, in: “Dermal Exposure Related to Pesticide Use. Discussion of Risk Assessment”, R.C. Honeycutt, G. Zweig and N.N. Ragsdale, eds., ACS Symp. Series 273:323–340, American Chemical SocietyGoogle Scholar
  36. Washington, D.C. Popendorf, W., 1992, Reentry field data and conclusions, Rev. Environ. Contam. Tox. 128: 71–117.Google Scholar
  37. Popendorf, W.J., and Leffingwell, J.T., 1982, Regulating organophosphate residues for worker protection, Residue Rev. 82: 125–201.PubMedCrossRefGoogle Scholar
  38. Quinby, G.E., and Lemmon, A.B., 1958, Parathion residues as a cause of poisoning in crop workers, J. Am. Med. Assoc. 166: 740–746.PubMedCrossRefGoogle Scholar
  39. Raheel, M., 1991, Pesticide transmission in fabrics: Effect of perspiration, Bull. Environ. Contam. Toxicol. 46: 837–844.PubMedCrossRefGoogle Scholar
  40. Serat, W.F., Mengle, D.C., Anderson, H.P., Kahn, E., and Bailey, J.B., 1975, On the estimation of worker entry intervals into pesticide treated fields with and without the exposure of human subjects, Bull. Environ. Contam. Toxicol. 13: 506–512.PubMedCrossRefGoogle Scholar
  41. Stamper, J.H., Nigg, H.N., and Allen, J.C., 1979, Organophosphate insecticide disappearance from leaf surfaces: An alternative to first-order kinetics, Environ. Sci. Technol. 13: 1402–1405.CrossRefGoogle Scholar
  42. Timme, G., Frese, H., and Laska, V., 1986, Zur statistischen Interpretation und graphischen Darstellung des Abbauverhaltens von Pflanzenbehandlungsmittel-Rückständen II, Pflanzenschutz-Nachrichten Bayer 39: 188–204.Google Scholar
  43. van Hemmen, J.J., 1993, Re-entry exposure and product development. Pesticides and greenhouse crops: An example, presented in Brussels, June 1993 at a seminar on Agrochemical Occupational Risk Assessment. The Future, Jellinek, Schwartz & Connolly, Inc., Washington, DC, USA.Google Scholar
  44. van Hemmen, J.J., Brouwer, R., and Brouwer, D.H., 1992, Worker exposure to pesticides in greenhouses. Health risks during harvesting of flowers, Med. Fac. Landbouww. Univ. Gent. 57 /36: 1269–1283.Google Scholar
  45. Williams, I.H., 1978, Dissipation of sulfotep and nicotine in a greenhouse atmosphere following their use as fumigants, J. Environ. Sci. Health B13: 235–241.Google Scholar
  46. Williams, D.T., Denley, H.V., and Lane, D.A., 1980, On site determination of sulfotep air levels in a fumigating greenhouse, Am. Ind. Hyg. Assoc. J., 41: 647–651.PubMedCrossRefGoogle Scholar
  47. Willis, G.H., and McDowell, L.L., 1987, Pesticide persistence on foliage, Rev. Environ. Contam. Toxicol. 100: 23–73.CrossRefGoogle Scholar
  48. Woollen, B.H., 1993, Biological monitoring for pesticide exposure, Ann. Occup. Hyg. 37 (5): 525–540.PubMedCrossRefGoogle Scholar
  49. Zweig, G., Leffingwell, J.T., and Popendorf, Wm., 1985, The relationship between dermal exposure by fruit harvesters and dislodgeable foliar residues, J. Environ. Sci. Health B20: 27–59.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Joop J. van Hemmen
    • 1
  • Yvette G. C. van Golstein Brouwers
    • 1
  • Derk H. Brouwer
    • 1
  1. 1.Department of Occupational ToxicologyTNO Nutrition and Food Research InstituteHV RijswijkThe Netherlands

Personalised recommendations