From Integrability to Chaos: Examples of Interrelations between Physics and Dynamics for Minor Bodies in the Solar System

  • C. Froeschlé
  • Ph. Bendjoya
  • A. Cellino
Part of the NATO ASI Series book series (NSSB, volume 331)


We present some examples of dynamical problems in the solar system with strong physical implications and for which regular and chaotic behaviours are fundamental.

Due to their relatively small size, asteroids are mostly primordial (i.e. they have not been affected by geological processes) and therefore can give us essential information on the physical properties of the primitive matter in the solar system. Among asteroids, those belonging to the so called families (i.e. fragments of a parent body, with low enough ejection velocities to produce initially swarms of objects having similar orbital elements) give us a unique opportunity to get information about the interior of asteroidal bodies. The problem has two faces. First to obtain, under the assumption of quasi regularity, quasi first uniform integrals of the motion: the so called proper elements, and second, to use objective statistical methods of cluster analysis. Recently, decisive improvements came from the application of high-order perturbation theories in computing the proper elements (Williams, Yuasa, Knežević and Milani) and from the use of reliable cluster analysis methods (Zappalà et al. 1990, Bendjoya et al. 1991).

On the other hand, chaotic routes are essential to bring either asteroidal material or comets in the vicinity of Earth. In order to study the chaotic behaviour of asteroidal and cometary orbits, modelling becomes an aim and a tool. Monte Carlo mappings and Markov processes are the main tools which will be discussed in this paper as well as the strength and weakness of these methods versus the origin of chaos.


Wavelet Coefficient Orbital Element Kuiper Belt Oort Cloud Proper Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold, J.A., 1969, in “A. J”. 38:1235.CrossRefADSGoogle Scholar
  2. Bendjoya, Ph., Slézack, E., Froeschlé, Cl.: 1991, A & A, 251 pp. 312–330.zbMATHADSGoogle Scholar
  3. Bendjoya Ph., Cellino A., Froeschlé CL, Zappalà V.: 1993 A & A 272, 651–670.ADSGoogle Scholar
  4. Bendjoya Ph.: 1993: A & A, in press.Google Scholar
  5. Brouwer, D., 1951, in “A. J.” 56: 9.CrossRefADSGoogle Scholar
  6. Carusi, A., Massaro, E., 1978, in A& Suppl.” 34: 81.ADSGoogle Scholar
  7. Daubechie, L, 1990 I.E.E.E. Trans, on Information Theory.Google Scholar
  8. Ducan, M., Quinn, T., Tremaine, S.: 1989, Icarus 82, 402–418.CrossRefADSGoogle Scholar
  9. Froeschlé, C., Rickman, H: 1981, Icarus 46, 400–414.CrossRefADSGoogle Scholar
  10. Froeschlé, C., Rickman, H.: 1988, Celest. Mech. 43, 265–284.CrossRefzbMATHADSGoogle Scholar
  11. Froeschlé. C., Petit, J.M.: 1990, A&A 238, 413–423.zbMATHADSGoogle Scholar
  12. Hadjidemetriou, J.: 1991, Celest. Mech 56, 563–599.CrossRefMathSciNetADSGoogle Scholar
  13. Heisler, J., Tremaine, S.: 1986, Icarus 65, 13–26.CrossRefADSGoogle Scholar
  14. Hirayama, K., 1918: “A. J.” 31: 185.CrossRefADSGoogle Scholar
  15. Kozai, Y., 1979 in “Asteroids”, T. Gehrels. Ed., pp. 334–358, University of Arizona Press, Tucson.Google Scholar
  16. Lago, B., Cazenave, A.: 1983, Icarus 53, 68–83.CrossRefADSGoogle Scholar
  17. Levinson, H.F.: 1991, AJ., Vol 102, No 2, pp 787–794.CrossRefADSGoogle Scholar
  18. Lindblad, B.A., Southworth, R.B., 1971 in “Physical Studies of Minor Planets”, T. Gehrels, Ed. pp. 337–352, NASA SP-267.Google Scholar
  19. Meyer, Y., 1989, in “Wavelets, time-frequency methods and phase space”, J.M. Combes, A. Grossmann, Ph. Tchamitchian, Eds., Springer.Google Scholar
  20. Milani, A., Knež ević, Z.: 1990, in “Celest. Mech.”, 49: 247.Google Scholar
  21. Milani, A. Farinella, P., Knež ević, Z: 1991 in “Compte rendu de la quinzieme école de printemps d’astrophyique de Goutelas” Eds. Benest, D. and Froeschlé Cl. (Frontières).Google Scholar
  22. Milani, A., Knež ević, Z.: 1992 Icarus, 98: 211–232.CrossRefADSGoogle Scholar
  23. Murtagh, F., Heck, A., 1987 “Mutivariable data analysis”, Reidel.Google Scholar
  24. Petit, J.M., Froeschlé, C.: A&A, in press.Google Scholar
  25. Remy, F., Mignard, F.: 1985, Icarus 63, 1–19.CrossRefADSGoogle Scholar
  26. Rickman, H., Froeschlé C.: 1979, AJ. 84, 1910–1917.CrossRefADSGoogle Scholar
  27. Rickman, H., Froeschlé, C.: 1983, Moon and Planets 28, 69–86.CrossRefzbMATHADSGoogle Scholar
  28. Rickman, H., Froeschlé, C.: 1988, Celest. Mech. 43, 243–263.CrossRefADSGoogle Scholar
  29. Rickman, H., Vaghi, S.: 1976, A&A 51, 327–342.ADSGoogle Scholar
  30. Varosi, F., Gebogi, V., Yorke. J.A.: 1987, Phys. Lett. A 124, 59–64.CrossRefMathSciNetADSGoogle Scholar
  31. Weissman, P.R.: 1982, in Cornets (ed. L.L. Wilkening), Univ. Arizona Press, Tucson, pp. 637–658.Google Scholar
  32. Williams, J.G.: 1979, in “Asteroids”, T. Gerhels, Ed., pp.1040–1063 University of Arizona Press, Tucson.Google Scholar
  33. Zappalà, V., Cellino, A, Farinella, P., Knežević, Z.: 1990 in “A. J.”, 100, 2030.CrossRefADSGoogle Scholar
  34. Zappalà V., Cellino A. Farinella P., Milani A.: 1993, A. J. in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • C. Froeschlé
    • 1
  • Ph. Bendjoya
    • 1
  • A. Cellino
    • 2
  1. 1.Observatoire de la Côte d’AzurNice Cedex 4France
  2. 2.Osservatorio Astronomico di TorinoItaly

Personalised recommendations