A method for Visualizing the 4-Dimensional Space of Section in 3-D Hamiltonian Systems

  • P. A. Patsis
  • L. Zachilas
Part of the NATO ASI Series book series (NSSB, volume 331)

Abstract

An empirical method that uses colors and rotation of 3D figures is proposed for visualizing the 4D “Poincaré space of section” in 3D Hamiltonian systems. The representation of the 4th dimension as color variation in 3D projections, gives essential information about the areas that are close to each other in the 4D space. This method helps us to reveal existing structures in cases where the consequents in the 3D projections seem to fill densely the space.

Keywords

Periodic Orbit Gray Shade Unstable Periodic Orbit Interactive Data Language Orbital Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Contopoulos G., Magnenat P. and Martinet L.: 1982, Physica D, Vol.6D 123.MathSciNetADSGoogle Scholar
  2. Contopoulos G.: 1984, in “Nonlinear Phenomena in Physics” (ed.F. Claro), p.238, Springer Verlag.Google Scholar
  3. Contopoulos G. and Magnenat P.: 1985, Celest. Mech. 37, 387.CrossRefMATHMathSciNetADSGoogle Scholar
  4. May A. and Binney J.: 1986, MNRAS 221, 857.ADSGoogle Scholar
  5. Magnenat P.: 1982, Cel. Mech. 28, 319.CrossRefMATHMathSciNetADSGoogle Scholar
  6. Martinet L. & Magnenat P.: 1981, Astron. & Astroph. 96, 68.MATHMathSciNetADSGoogle Scholar
  7. Patsis P.A. & Zachilas L.: 1990, Astron. & Astroph. 227, 37.MathSciNetADSGoogle Scholar
  8. Patsis P.A. & Zachilas L.: 1994, “Using colors and rotation for visualizing 4-dimensional Poincare Cross Sections”, to appear in Int. J. Bifurcation and Chaos.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • P. A. Patsis
    • 1
  • L. Zachilas
    • 2
  1. 1.ESOGarching bei MünchenGermany
  2. 2.Dept. of ChemistryUniversity of CreteHellas

Personalised recommendations