Hamiltonian Mechanics pp 353-360 | Cite as
Antibrackets and Supersymmetric Mechanics
Chapter
Abstract
Using the odd symplectic structure constructed over the tangent bundle of the symplectic manifold we construct the simple supergeneralization of an arbitrary Hamiltonian mechanics. In the case where the initial mechanics defines the Killing vector of some Riemannian metric, the corresponding supersymmetric mechanics can be reformulated in terms of the even symplectic structure on the supermanifold.
Keywords
Hamiltonian System Poisson Bracket Tangent Bundle Symplectic Manifold Symplectic Structure
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.F. A. Berezin — Introduction to Superanalysis., D. Reidel, Dordrecht, 1986.Google Scholar
- T. Voronov — Geometric Integration Theory on Supermanifolds. Sov. Sci. Rev. C, Math.Phys., 9 (1992), 1.Google Scholar
- 2.D. A. Leites — Dokl. Akad. Nauk SSSR, 236(1977), 804.MathSciNetGoogle Scholar
- 3.V. N. Shander — Dokl. Akad. Nauk. Bulgaria 36 (1983), 309.MATHMathSciNetGoogle Scholar
- 4.I. A. Batalin, G. A. Vilkovisky — Phys.Lett., 102B(1981), 27.ADSCrossRefMathSciNetGoogle Scholar
- I.A. Batalin, G. A. Vilkovisky — Phys. Rev., D28(1983), 2567.ADSMathSciNetGoogle Scholar
- 5.I. A. Batalin, P. M. Lavrov, I. V. Tyutin — J. Math. Phys., 31(1990) 1487.ADSCrossRefMATHMathSciNetGoogle Scholar
- I.A. Batalin, P. M. Lavrov, I. V. Tyutin — J. Math. Phys., 32(1991), 532.ADSCrossRefMATHMathSciNetGoogle Scholar
- I.A. Batalin, P. M. Lavrov, I. V. Tyutin — J. Math. Phys., 32(1991), 2513.ADSCrossRefMathSciNetGoogle Scholar
- I.A. Batalin, I. V. Tyutin — Int. J. Mod. Phys., A8 (1993) 2333.ADSCrossRefMathSciNetGoogle Scholar
- 6.E. Witten — Mod. Phys. Lett., A5 (1990), 487; Phys. Rev., D46(1992), 5446.ADSCrossRefMathSciNetGoogle Scholar
- 7.D. V. Volkov — JETP Lett., 38(1983), 508.Google Scholar
- D. V. Volkov, V. A. Soroka, V. I. Tkach — Sov. J. Nucl. Phys., 46 (1987), 110.Google Scholar
- 8.D. V. Volkov, V. A. Soroka, A. I. Pashnev, V. I. Tkach — JETP Lett., 44 (1986), 55.Google Scholar
- 9.O. M. Khudaverdian, A. P. Nersessian — Preprint YERPHI-1031(81)-1987; J. Math. Phys, 32 (1991), 1938; J. Math. Phys, 34 (1993), No. 11 (to appear).Google Scholar
- O. M. Khudaverdian — J. Math. Phys, 32(1991), 1934.ADSCrossRefMATHMathSciNetGoogle Scholar
- A. P. Nersessian — Theor. Math. Phys., 96 (1993), 140.MathSciNetGoogle Scholar
- 10.M. Blau, E. Keski-Vakkuri, A. J. Niemi — Phys.Lett., B246(1990), 92.ADSCrossRefMathSciNetGoogle Scholar
- A. Hietamaki, A. Yu. Morozov, A. J. Niemi, K. Palo — Phys. Lett. B263(1991), 417.ADSCrossRefMathSciNetGoogle Scholar
- A. Yu. Morozov, A. J. Niemi, K. Palo — Nucl. Phys. B377(1992), 295; E. Witten — Preprint IASSNS-HEP-92/15.ADSCrossRefMathSciNetGoogle Scholar
- 11.A. J. Niemi, O. Tirkkonen — Preprint UU-ITP 3/93.Google Scholar
- 12.J. J. Duistermaat, G. J. Heckman — Inv. Math. 69 (1982), 259.ADSCrossRefMATHMathSciNetGoogle Scholar
- J. J. Duistermaat, G. J. Heckman — Inv. Math. 72(1983), 153.ADSCrossRefMATHMathSciNetGoogle Scholar
- M. F. Atiah, R. Bott — Topology, 23, No. 1 (1984), 1.CrossRefMathSciNetGoogle Scholar
- 13.A.P. Nersessian — JETP Lett., 58 (1993), 64.ADSMathSciNetGoogle Scholar
Copyright information
© Springer Science+Business Media New York 1994