Dynamics and K-Symmetries

  • G. R. W. Quispel
  • J. S. W. Lamb
Part of the NATO ASI Series book series (NSSB, volume 331)

Abstract

The presence of symmetries is common in many dynamical systems of interest, endowing the system with certain simplifying features. A lot of attention has been given to continuous symmetries, since they give rise to conservation laws allowing one to reduce the number of degrees of freedom. During the past two decades attention has been directed to discrete symmetries as well, often in the context of bifurcation problems (Sattinger, 1979; Vanderbauwhede, 1982; Golubitsky et al., 1988).

Keywords

Periodic Orbit Phase Portrait Discrete Symmetry Chaotic Orbit Bifurcation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chirikov, B.V., 1979, A universal instability of many-dimensional oscillator systems, Phys. Rep. 216:63.MathSciNetGoogle Scholar
  2. Chossat, P., and Golubitsky, M., 1988, Symmetry-increasing bifurcation of chaotic attractors, Physica D 32:423.CrossRefMATHMathSciNetADSGoogle Scholar
  3. D’Ariano, G.M., Evangelista, L.R., and Saraceno, M., 1992, Classical and quantum structures in the kicked-top model, Phys.Rev.A 45:3646.CrossRefADSGoogle Scholar
  4. DeVogelaere, R., 1958, On the structure of symmetric periodic solutions of conservative systems, with applications, in: “Contributions to the Theory of Nonlinear Oscillations” Vol. 4, ed. S. Lefschetz, Princeton University Press, Princeton.Google Scholar
  5. Golubitsky, M., Stewart, I., and Schaeffer, D.G., 1988, “Singularities and Groups in Bifurcation Theory”, Vol. 2, Applied Mathematical Sciences, Vol. 69, Springer, New York.CrossRefMATHGoogle Scholar
  6. Hoveijn, I., 1992, Symplectic reversible maps, tiles and chaos, Chaos, Solitons and Fractals 2:81.CrossRefMATHMathSciNetADSGoogle Scholar
  7. Kimball, J.C., and Dumas, H.S., 1990, Symmetry in regular motion: relation to chaos, Phys. Lett. A 144:201.CrossRefMathSciNetADSGoogle Scholar
  8. Lamb, J.S.W., 1992, Reversing symmetries in dynamical systems, J. Phys. A 25:925.CrossRefMATHMathSciNetADSGoogle Scholar
  9. Lamb, J.S.W., 1993a, Crystallographic symmetries of stochastic webs, J. Phys. A 26 (in press).Google Scholar
  10. Lamb, J.S.W., 1993b, Stochastic webs with fourfold rotation symmetry, this volume.Google Scholar
  11. Lamb, J.S.W., and Quispel, G.R.W., 1993, Reversing k-Symmetries in Dynamical Systems, preprint.Google Scholar
  12. Llibre, J. and MacKay, R.S., 1992, Pseudo Anosov homeomorphisms on a sphere with four punctures have all periods, preprint.Google Scholar
  13. MacKay, R.S., 1984, Equivariant universality classes, Phys. Lett. A 106:99.CrossRefMathSciNetADSGoogle Scholar
  14. Piña, E. and Jiménez Lara, L., 1987, On the symmetry lines of the standard mapping, Physica D 26:369.CrossRefMATHADSGoogle Scholar
  15. Piña, E. and Cantoral, E., 1989, Symmetries of the quasi-crystal mapping, Phys. Lett. A 135:190.CrossRefMathSciNetADSGoogle Scholar
  16. Ichikawa, Y.H., Kanimura, T., Hatori, T., and Kim, S.Y., 1989, Stochasticity and symmetry of the standard map, Prog. Theor. Phys. Supp. 98:1.CrossRefADSGoogle Scholar
  17. Richter, P.H., Scholz, H., and Wittek, A., 1990, A breathing chaos, Nonlinearity 3:45.CrossRefMATHMathSciNetADSGoogle Scholar
  18. Roberts, J.A.G., and Baake, M., 1993, Trace maps as 3-d reversible dynamical systems with an invariant, preprint.Google Scholar
  19. Roberts, J.A.G., and Quispel, G.R.W., 1992, Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems, Phys. Rep. 216:63.CrossRefMathSciNetADSGoogle Scholar
  20. Sattinger, D.H., 1979, “Group Theoretic Methods in Bifurcation Theory”, Lecture Notes in Mathematics, Vol. 762, Springer, New York.MATHGoogle Scholar
  21. Vanderbauwhede, A., 1982, “Local Bifurcation and Symmetry”, Research Notes in Mathematics, Vol. 75, Pitman, London.MATHGoogle Scholar
  22. Zaslavsky. G.M., Sagdeev, R.Z., Usikov, D.A., and Chernikov, A.A., 1991 “Weak Chaos and Quasireg-ular Patterns”, Cambridge Nonlinear Science Series Vol.1, Cambridge University Press, Cambridge.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • G. R. W. Quispel
    • 1
  • J. S. W. Lamb
    • 2
  1. 1.Department of MathematicsLa Trobe UniversityBundoora, MelbourneAustralia
  2. 2.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations