Natural Boundaries of Normalizing Transformations

  • Luca Billi
  • Monica Malavasi
  • Giorgio Turchetti
Part of the NATO ASI Series book series (NSSB, volume 331)


The complex time singularities of Hamilton’s equations have been investigated by Chang et al.1 in order to distinguish integrable from nonintegrable systems. The analysis of the singularities for the transformation which brings a complexified hamiltonian in normal form2 extends to hamiltonian maps; bounds are provided by KAM techniques, but the exact location of the singularities and their nature remain unknown. Some heuristic information is provided by perturbation theory3,4, but at best only the main singularities can be identified. Given an area preserving map near an elliptic point, the singularities in the action plane are poles, at any finite order; the Padé Approximants (P.A.) are adequate to detect them, as shown in5 and to provide the analytic continuation of the perturbation series beyond the resonances.


Finite Order Natural Boundary Complex Frequency Heuristic Information Homologic Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. F. Chang, M. Tabor, J. Weiss “Analytic structure of Henon Heiles hamiltonian in integrable and nonintegrable regimes” J. Math. Phys. 23, 531 (1982).CrossRefzbMATHMathSciNetADSGoogle Scholar
  2. 2.
    A. Bazzani, G. Turchetti “Singularities of normal forms and topology of orbits in area preserving maps” J. Phys. A 25, L427 (1992).MathSciNetADSGoogle Scholar
  3. 3.
    A. Bazzani, S. Abenda contribution to this volume.Google Scholar
  4. 4.
    A. Bazzani, G. Turchetti “Perturbation Theory and Analyticity of Normalizing Transformation” Chaos: theory and practice ed. T. Bountis, Springer Verlag (1993).Google Scholar
  5. 5.
    G. Servizi, G. Turchetti “Normal forms singularities in area preserving maps and analytic continuation by Padé Approximants” Physics Letters 151, 485 (1990).CrossRefMathSciNetGoogle Scholar
  6. 6.
    I. C. Percival, J. M. Greene “Hamiltonian maps in the complex plane” Physica 3D, 530, (1981).MathSciNetADSGoogle Scholar
  7. 7.
    I. C. Percival “Chaotic boundary of a hamiltonian map” Physica 6D, 67, (1982).MathSciNetADSGoogle Scholar
  8. 8.
    A. Berretti, L. Chierchia “On the complex analytic structure of the golden invariant curve for the standard map” Nonlinearity 3, 39 (1990).CrossRefzbMATHMathSciNetADSGoogle Scholar
  9. 9.
    C. Falcolini, R. de La Llave “Numerical calculation of domains of analyticity for perturbation theories in presence of small divisors” J. Stat. Phys. 67, 645 (1992).CrossRefzbMATHADSGoogle Scholar
  10. 10.
    A. Berretti, S. Marmi “Standard map at complex rotation numbers: creation of natural boundaries” Phys. Rev. Lett. 68, 1443 (1992).CrossRefADSGoogle Scholar
  11. 11.
    M. Malavasi “Analysis of singularities of the Standard Map conjugation function” Chaos: theory and practice Ed. T. Bountis, Springer Verlag (1992).Google Scholar
  12. 12.
    L. Billi, E. Todesco, G. Turchetti “Singularity analysis by Padé Approximants of some holomorphic maps” Dep. of Phys. Bologna preprint (1993).Google Scholar
  13. 13.
    L. Billi, G. Turchetti, R. Xie “Natural boundaries for hamiltonian maps and the genesis of the Siegel disc” Phys. Rev. Lett. 71, 2513 (1993).CrossRefzbMATHMathSciNetADSGoogle Scholar
  14. 14.
    J. Baker, P. Graves Morris, “Padé Approximants” in Encyclopedia oi Mathematics, vol 13, 14 Add. Wesley (1981).Google Scholar
  15. 15.
    J. Gilewicz, B. Truong-Van “Froissart doublets in the Padé approximation and noise” in Constructive theory of functions Sophia 1988.Google Scholar
  16. 16.
    M. Herman Comm. Math. Phys. 99, 593 (1985).CrossRefzbMATHMathSciNetADSGoogle Scholar
  17. 17.
    Brent “MPA: multiple precision floating point arithmetic” CERN Library A105.Google Scholar
  18. 18.
    R. Xie “Padé Approximants applied to the analysis of the singularity structure for conjugacy problem” Chaos: theory and practice Ed. T. Bountis, Springer Verlag (1992).Google Scholar
  19. 19.
    J. Yoccoz “Théorème de Seigel, nombres de Bruno et polynomes Quadratiques” Preprint-Université Paris Sud (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Luca Billi
    • 1
  • Monica Malavasi
    • 1
  • Giorgio Turchetti
    • 1
  1. 1.Department of Physics, INFN, Sezione di BolognaUniversity of BolognaBolognaItaly

Personalised recommendations