Advertisement

Nekhoroshev and KAM Theorems Revisited via a Unified Approach

  • Amadeu Delshams
  • Pere Gutiérrez
Part of the NATO ASI Series book series (NSSB, volume 331)

Abstract

We consider an n-degrees of freedom nearly-integrable Hamiltonian system. The system is put in normal form and estimates are obtained for the size of the remainder. The transformation to normal form is constructed by means of an iterative process. This normal form provides the analytic part required for both proofs of KAM and Nekhoroshev theorems.

Assuming non-degeneracy conditions on the unperturbed Hamiltonian, the geometric part can be fulfilled. Our estimates rely on bounds of the associated vectorfields, and provide, in Nekhoroshev theorem, the “optimal” stability exponent: l/2n for quasiconvex Hamiltonians.

Keywords

Normal Form Hamiltonian System Invariant Torus Integrable Hamiltonian System Diophantine Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Arn63]
    V. I. Arnold. Proof of a theorem of A. N. Kolmogorov on the preservation of quasi-periodic motions under small perturbations of the Hamiltonian. Russian Math. Surveys 18: 9–36, 1963.CrossRefADSGoogle Scholar
  2. [BGG85]
    G. Benettin, L. Galgani, A. Giorgilli. A proof of Nekhoroshev’s theorem for the stability times in nearly integrable Hamiltonian systems. Cel. Mech. 37: 1–25, 1985.CrossRefzbMATHMathSciNetADSGoogle Scholar
  3. [Chi79]
    B. V. Chirikov. A universal instability of many-dimensional oscillator systems. Physics Reports 52: 263–379, 1979.CrossRefMathSciNetADSGoogle Scholar
  4. [DG93]
    A. Delshams, P. Gutiérrez. Effective stability for nearly integrable Hamiltonian systems. In C. Perelló, C. Simó, J. Solà-Morales (editors), Equadiff 91. World Scientific, Singapore, 1993.Google Scholar
  5. [Fas90]
    F. Fassò. Lie series method for vector fields and Hamiltonian perturbation theory. J. Appl. Math. Phys. (ZAMP) 41: 843–864, 1990.CrossRefzbMATHGoogle Scholar
  6. [GD*89]
    A. Giorgilli, A. Delshams, E. Fontich, L. Galgani, C. Simó. Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem. J. Diff. Equations 77: 167–198, 1989.CrossRefzbMATHADSGoogle Scholar
  7. [Ko178]
    A. N. Kolmogorov. The general theory of dynamical systems and classical mechanics. In R. H. Abraham, J. E. Marsden (editors), Foundations of Mechanics: 741-757. The Benjamin/Cummings Publishing Company, 1978.Google Scholar
  8. [Loc90]
    P. Lochak. Stabilité en temps exponentiels des systèmes hamiltoniens proches de systèmes integrables: résonances et orbites fermées. Preprint. Laboratoire de Mathématiques, École Normale Supérieure, 1990.Google Scholar
  9. [LN92]
    P. Lochak, A. I. Neishtadt. Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian. Chaos 2: 495–499, 1992.CrossRefzbMATHMathSciNetADSGoogle Scholar
  10. [Mos62]
    J. Moser. On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Gottingen Math. Phys. Kl. 2: 1–20, 1962.Google Scholar
  11. [Nek77]
    N. N. Nekhoroshev. An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems. Russian Math. Surveys 32: 1–65, 1977.CrossRefzbMATHADSGoogle Scholar
  12. [Pos82]
    J. Pöschel. Integrability of Hamiltonian systems on Cantor sets. Comm. Pure Appl. Math. 35: 653–695, 1982.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [Pos92]
    J. Pöschel. On Nekhoroshev estimates for quasi-convex Hamiltonian systems. Math. Z. (to appear), 1992.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Amadeu Delshams
    • 1
  • Pere Gutiérrez
    • 2
  1. 1.Dep. de Matemàtica Aplicada IUniv. Pol. de CatalunyaBarcelonaSpain
  2. 2.Dep. de Matemàtica Aplicada IIUniv. Pol. de CatalunyaBarcelonaSpain

Personalised recommendations