Advertisement

Scars in Groups of Eigenfunctions

  • F. Borondo
  • G. G. de Polavieja
  • R. M. Benito
Part of the NATO ASI Series book series (NSSB, volume 331)

Abstract

A great deal of interest has been devoted recently to the study of quantum systems whose classical counterparts are chaotic1–3. Many authors have considered the distribution of energy levels, and demonstrated the validity of random matrix theory4. Also, the long range correlations in chaotic spectra have been related to classical periodic orbits (PO)5 using a PO summation formulae due to Gutzwiller1,6. In a series of papers, Gutzwiller constructed a semiclassical version of the quantum mechanical Green’s function in terms of classical orbits, and applied it to the calculation of eigenvalues of classically chaotic systems6,7.

Keywords

Periodic Orbit Random Matrix Theory4 Classical Orbit Husimi Function Quartic Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.C. Gutzwiller. “Chaos in Classical and Quantum Mechanics”, Springer Verlag, New York (1990).CrossRefzbMATHGoogle Scholar
  2. 2.
    M.J. Giannoni, A. Voros and J. Zinn-Justin, eds., “Chaos and Quantum Physics”, North-Holland, Amsterdam (1991).Google Scholar
  3. 3.
    K. Nakamura, “Quantum Chaos: A New Paradigm of Nonlinear Dynamics”, Cambridge University Press, Cambridge (1993).zbMATHGoogle Scholar
  4. 4.
    S.W. McDonald and A.N. Kauffman, Phys. Rev. Lett. 42:1189 (1979).ADSCrossRefGoogle Scholar
  5. O. Bohigas, M.J. Giannoni and C. Smit, Phys. Rev. Lett. 52:1 (1984).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 5.
    J. Main, G. Wiebush, A. Holle and K.H. Welge, Phys. Rev. Lett. 57:2789 (1986).ADSCrossRefGoogle Scholar
  7. D. Wintgen, Phys. Rev. Lett. 58:1589 (1987).ADSCrossRefGoogle Scholar
  8. G.S. Ezra, K. Richter, G. Tanner and D. Wintgen, J. Phys. B 24:L413 (1991).ADSCrossRefGoogle Scholar
  9. 6.
    M.C. Gutzwiller, J. Math. Phys. 12:343 (1971).ADSCrossRefGoogle Scholar
  10. 7.
    M.C. Gutzwiller, Phys. Rev. Lett. 45:150 (1980).ADSCrossRefGoogle Scholar
  11. 8.
    R.M. Stratt, N.C. Handy and W.H. Miller, J. Chem. Phys. 71:3311 (1979).ADSCrossRefGoogle Scholar
  12. 9.
    M.V. Berry, J. Phys. A 10:2083 (1977).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 10.
    A. Voros, in: “Stochastic Behaviour in Classical and Quantum Hamiltonian Systems”, G. Casati and J. Ford, eds., Springer Verlag, New York (1979).Google Scholar
  14. 11.
    A.I. Schnirelman, Ups. Mat. Nauk. 29:181 (1974).Google Scholar
  15. 12.
    S.W. MacDonald and Kauffman, Phys. Rev. Lett. 42:1189 (1979).ADSCrossRefGoogle Scholar
  16. 13.
    E.J. Heller, Phys. Rev. Lett. 53:1515 (1984).ADSCrossRefMathSciNetGoogle Scholar
  17. S. Tomsovic and E.J. Heller, Phys. Rev. Lett. 70:1405 (1993).ADSCrossRefGoogle Scholar
  18. 14.
    H.S. Taylor, J. Zakrzewski and S. Saini, Chem. Phys. Lett. 145:555 (1988).ADSCrossRefGoogle Scholar
  19. 15.
    E. Wigner, Phys. Rev. 40:749 (1932).ADSCrossRefGoogle Scholar
  20. 16.
    K. Husimi, Proc. Phys. Soc. Japan, 22:264 (1940).Google Scholar
  21. 17.
    E.B. Bogomolny, Physica D 31:169 (1988).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  22. 18.
    B. Simon, Ann. Phys. 146:209 (1983).ADSCrossRefzbMATHGoogle Scholar
  23. 19.
    R.L. Waterland, J.M. Yuan, C.C. Martens, R.E. Gillilan and W.P. Reinhardt, Phys. Rev. Lett. 61:2733 (1988).ADSCrossRefMathSciNetGoogle Scholar
  24. 20.
    B. Eckhardt, G. Hose and E. Pollak, Phys. Rev. A 39:3776 (1989).ADSCrossRefMathSciNetGoogle Scholar
  25. 21.
    G.G. de Polavieja, F. Borondo and R.M. Benito, Quantum Localization on the quartic Potential, An. Fis. (in press).Google Scholar
  26. 22.
    I.P. Hamilton and J.C. Light, J. Chem. Phys. 84:306 (1986).ADSCrossRefGoogle Scholar
  27. 23.
    J.M. Gómez-Llorente, F. Borondo, N. Berenguer and R.M. Benito, Chem. Phys. Lett. 192:430 (1992).ADSCrossRefGoogle Scholar
  28. 24.
    M.J. Davis, Chem. Phys. Lett. 192:479 (1992).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • F. Borondo
    • 1
  • G. G. de Polavieja
    • 1
  • R. M. Benito
    • 2
  1. 1.Dep. de Química, C-XIVUniversidad Autónoma de Madrid CANTOBLANCOMadridSpain
  2. 2.Dep. de Física Aplicada. ETSI de TelecomunicaciónUniversidad Politécnica de MadridMadridSpain

Personalised recommendations