Advertisement

Effective Stability for Periodically Perturbed Hamiltonian Systems

  • Àngel Jorba
  • Carles Simó
Part of the NATO ASI Series book series (NSSB, volume 331)

Abstract

In this work we present a method to bound the diffusion near an elliptic equilibrium point of a periodically time-dependent Hamiltonian system. The method is based on the computation of the normal form (up to a certain degree) of that Hamiltonian, in order to obtain an adequate number of (approximate) first integrals of the motion. Then, bounding the variation of those integrals with respect to time provides estimates of the diffusion of the motion.

The example used to illustrate the method is the Elliptic Spatial Restricted Three Body Problem, in a neighbourhood of the points L 4,5. The mass parameter and the eccentricity are the ones corresponding to the Sun-Jupiter case.

Keywords

Normal Form Hamiltonian System Homogeneous Polynomial Vertical Mode True Anomaly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.I. Arnol’d: “Dynamical Systems III”, Springer-Verlag (1988).Google Scholar
  2. 2.
    A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó: Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the Restricted Three Body Problem, Journal of Differential Equations 77:1 (1989).CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    C. Simo: Estabilitat de sistemes Hamiltonians, Mem. de la Real Acad. de Cienc. i Art. de Barcelona, Vol. XLVIII, no. 7 (1989).Google Scholar
  4. 4.
    V. Szebehely: “Theory of Orbits”, Academic Press (1967).Google Scholar
  5. 5.
    G. Gómez, A. Jorba, J. Masdemont and C. Simó: Study of Poincaré maps for Orbits near Lagrangian Points, ESOC contract 9711/91/D/IM(SC), Second Progress Report (1992).Google Scholar
  6. 6.
    C. Simó: Stability regions for the elliptic RTBP near the triangular points (in progress).Google Scholar
  7. 7.
    A. Jorba and C. Simó: Hyperbolic tori close to the equilateral points of the elliptic RTBP (in progress).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Àngel Jorba
    • 1
  • Carles Simó
    • 2
  1. 1.Departament de Matemàtica Aplicada I, ETSEIBUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Departament de Matemàtica Aplicada i AnàlisiUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations